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INTRODUCTION and contractor and mandatory peer review requirement

for al structural design projects with more than 4
Chile is one of the countries with the highest seismic stories high. Additionally, the code strict inter-story
activity in the world, primarily due to the subduction drifts limits, which typically resuits in the need for
process of the Nazca Plate below the South American using reinforced concrete shear walls or mixed systems
continent. From the late 16™ century to the present, composed by moment resistant frames and shear walls
there has been a high-magnitude damaging earthquake has contribute to a very low damage level. Moment
(Mw>7.5) every 8 to 10 years on average throughout resistant frames without shear walls are not feasible in
the Chilean territory. Figure 1 shows the statistics of the Chilean practice. Figure 4 shows the evolution with
seismic events with Modified Mercalli Intensities IMM time of the ratio between the in-plan shear wall area
greater than V occurred between 2007 and 2014 in the and the total floor area, and the evolution with time of
Chilean territory. total building heights (after Calderon 2007). It is

observed historically the wall density ratio has

" ; W ' fluctuated between 2 and 4%.
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DESIGN/CONSTRUCTION TECHNIQUES Figure 2. Housing growth per construction material.
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The Chilean traditional design and construction
practices consider the application and enforcement of
strict seismic design codes. The present design
practices for dwellings mainly consider the use of
reinforced concrete or confined masonry walls. The
use of non-seismic materials such as adobe or
unreinforced masonry has decreased systematically
since 1920, as illustrated in Figure 2. Non-engineered
adobe and unreinforced masonry structures been
severely damaged in al major earthquake in Chile,
Mw> 8 every 10 years in average, and the have been
demolished and not reconstructed after past
earthquakes, reducing the existing stock of risky

Figure 3. Typical damage non engineered structure.

structures (Figure 3). On the other hand, the good Figure 5 shows a plan view of atypical office building,
performance observed in engineered structures the Chilean Chamber of Construction, a high rise 24-
designed according to the Chilean code reguirements story building, 78 m in height, with wall density ratios
during M,>8 earthquakes is attributed to the used of equa to 2.3 and 4.6% in the longitudina and
structural walls, strict code compliance by the designer transverse directions, respectively. The typical story
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height is 3.3 m. The fundamental period of the
structure is 0.95 seconds. This building has been
instrumented by the University of Chile
(http://terremotos.ing.uchile.cl/) since the mid 90’s,
recording data during more than 80 strong motion
events.
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Figure 4. Evolution with time of wall areato floor arearatio
and total building height (after Calderon 2007).
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b) Photo modern construction
Figure 5. Chilean Chamber of Construction building.
(S. Contreras)

THE 2010 My 8.8 MAULE EARTHQUAKE

The February 27, 2010 My 8.8 Maule earthquake
(Figure 6) affected a significant portion (65% of stock,
approximately) of housing and health infrastructures,
causing economic losses exceeding 33 hillion US
dollars, equivalent to 15% Chile’s 2010 GDP. Ninety
percent of those losses were associated to nonstructural
damage (Figure 7).
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Figure 6. Zone affected by 2010 Maule Earthquake (Source:
USGS).

Figure 7. Example of generalized damage to non-structural
components and systems (Miranda et al., 2012).

Structural damage was observed in approximately
0.5% of buildings, including damage to shear bearing
walls due to deficient confinement detailing, excessive
slenderness of the walls, low cycle fatigue of
longitudinal rebar, excessive vertical compression
loads, walls discontinuities and wall/slab interactions
(Boroschek et al. 2014). Figure 8 shows examples of
the observed structural damage. Ten percent of the
losses (3.3 hillion US dollars) resulted from direct
damage to the 130 public health facilities affected.



Among these hospitals, 83% lost partialy or
completely its functionality exclusively due to damage
to nonstructural systems and components, such as
architectural elements, contents and electrical, and
mechanical and medical equipment. Five hospitals
needed to be evacuated due to severe structural and
nonstructural damage, twelve had greater than 75%
loss of function due to nonstructural damage, eight
were operating only partially after the main shock, and
eighty needed repairs or replacement. Figure 9 shows
the statistics of damage in hospitals located in the
epicentral area. Twenty two percent of the 19,179 beds
in public hospitals were lost during the main shock and
18% continued out of service one month after the
earthquake. Although structural damage was minimal
in hospitals, most suffered nonstructural damage and
loss of utilities.

¢) Damage due to wall/slab interaction
Figure 8. Damage to structural components.
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Figure 9. Statistics of damage in hospitals (Ministry of
Health)

Figure 10 shows the recovery function of the number
of beds available in the affected area. In Figure 10 it is
observed that recovering the number of beds available
before the M, 8.8 earthquake took 14 months.
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Figure 10. Recovery process for beds in affected area. (after
MINSAL)

CURRENT AND FUTURE TRENDS

Following the 2010 Maule earthquake, significant
efforts were made to introduce modifications into
design codes and standards in order to improve seismic
design practices, disseminate the use of seismic
protection technologies, such as seismic isolation and
energy dissipation (Retamales and Boroschek, 2014),
promote the seismic design of nonstructura
components and systems, and define minimum
requirements for utilities, communication and access
redundancy for critical facilities. All these actions
aimed a improving the seismic resilience of new
housing and health facilities. Figure 11 shows the
condition in 2013 and the projected condition by 2018
of the public health infrastructure.

Currently, public investment plans for the next 5 years
consider the construction of 8 new hospitals, with a
total investment about 1.4 billion US dollars and
770,000 square meters to be built. All of them consider
measures such as the use of seismic isolation, seismic
design of nonstructural components and system, and an
extensive instrumentation and monitoring plan,
oriented to increase the seismic resiliency of the public
health net. The codes used for designing residentia
buildings have been also updated to include the lessons
learned from the recent earthquakes.
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Figure 11. Current (2013) and projected condition of public
health infrastructure (after MINSAL)
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