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Abstract

In this article a new bidirectional tuned liquid column damper (BTLCD) is proposed for controlling the seismic response of
structures. The device acts as two independent and orthogonal tuned liquid column dampers (TLCDs), but due to its
configuration it requires less liquid than two equivalent independent TLCDs. The equations of motion of the system
formed by the BTLCD and the primary structure to be controlled, are obtained by means of Lagrangian dynamics explicity
considering the non symetrical action of the damping forces. First, the primary structure was assumed to have two
degrees of freedom (DOFs). Assuming that the system is excited by a base acceleration that can be considered to be a
white noise random process, the optimum design parameters of the device were obtained to minimise the response of
the primary structure. The optimum design parameters are presented as expressions covering a wide range of possible
configurations for the device in a controlled structure. The use of a BTLCD to control the seismic response of several DOF
structures was also studied, showing that if the structural response occurs mainly in two perpendicular modes, then the
optimum design parameters for two DOF structures can be used. Finally, experimental analysis of the BTLCD for
controlling the seismic response of a six DOF scale model are developed in order to verify the effectiveness and accuracy
of the equations and design procedures proposed herein.
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1 Introduction

More than 50% of the world's population lives in cities. The continuous growth of urban areas,
together with the development of modern construction techniques, have resulted in an increasing
number of tall buildings. These types of structures are characterised by its flexibility, with long
vibration periods and low intrinsic damping. Consequently, when subjected to dynamic loads such as
earthquakes, tall buildings develop oscillations that may persist long after the events themselves have
ceased. The vibration levels of such structures may exceed the serviceability criteria, causing
discomfort to occupants. In some cases the vibration may even be greater than agreed safe levels,
causing possible damage to nonstructural or structural components. Several devices have been
proposed to reduce the structural response of tall buildings. Among these, passive energy dissipation
devices have been widely accepted and used in several structures [1]. These type of devices absorbs
part of the energy supplied to the structure by external actions, such as winds or earthquakes,
thereby reducing its response. Although there are many kinds of passive dampers, tuned liquid
dampers (TLD) stand out due to its advantages, such as their low cost of manufacture and
maintenance. There is also practically no weight penalty to the building if the water is used for other
purposes such as to prevent the spread of fire, or for drinking.
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One key type of TLD is the tuned liquid column damper (TLCD). First proposed by Sakai et al. [2], in
essence this device consists of a U-shaped liquid tank. When the device is subject to an external
perturbation causing a displacement of the free Surface of the liquid, gravity acts as a restoring force,
allowing it to oscillate. A restriction is positioned in the centre of the horizontal section of the device,
which together with the friction, and the sudden change in flow direction between the horizontal and
vertical sections, produces an energy dissipation mechanism that dampens the oscillation of the
liquid. Several investigations have been carried out to the determine the optimum design parameters
of TLCDs. Gao et al. [3] studied TLCD optimisation for sinusoidal type excitations by numerical means.
Kareem and Yalla [28] determined the optimum design parameters for one-DOF primary structures
subjected to random-type actions. More recently Shum et al. [4] proposed optimal tuning parameters
for base-excited damped structures. Considering the nonclassical nature of the damping forces, Wu
and Hsieh studied the dynamic characteristics of the TLCD, and showed the existence of two coupled
natural frequencies between the primary structure and the device [5]. Wu et al. proposed a design
guide for TLCDs and primary structures subject to random wind loading [6]. Ghosh and Basu [7, 8]
studied an alternative TLCD configuration to control short period and nonlinear structures, connecting
the device via a spring to the primary structure to be controlled. Another option for controlling short-
period oscillations is the use of pressurized air columns as shown by Shum et al. [9]. The use of
multiple TLCDs for seismic applications has also been studied, showing that the use of such
configurations does not necessarily imply an improvement in structural control compared with a
single TLCD. However, their use increases robustness with respect to errors in estimating the dynamic
parameters of the controlled structure [10, 11]. Multiple TLCDs have also been studied for the
reduction of coupled lateral and torsional vibrations in long span bridges [12, 9].

Although the use of TLCDs can be an efficient way of reducing the response of buildings, one major
disadvantage is their inability to act in two perpendicular directions. This can be very useful for
controlling the structural response of buildings for two perpendicular modes with high participation
factors, as in the case of several tall buildings. The vibrational control of such structures using TLCDs
has been the subject of research by various investigators. One of the first attempts to use a
bidirectional TLCD was made by P.A. Hitchcock in 1997. The device can be regarded as several TLCDs
that share a common horizontal mass of water [13]. In 2010, Lee et al. Proposed the use of a
bidirectional tuned and sloshing damper, which acts as a TLCD in one direction and as a sloshing
damper in the perpendicular direction [14].

In this paper a new bidirectional tuned liquid column damper is proposed. The device acts like a TLCD
in two orthogonal directions; thanks to its configuration, the mass of liquid required is reduced
compared with two independent TLCDs. The first objective of this study was to derive the equations
of motion of the system formed by the BTLCD and the primary structure to be controlled, when both
are subject to a base acceleration. The formulation of the equations of motion, by means of
Lagrangian dynamics, explicitly considers the non-classical damping inherent in the system. The
optimal parameters are derived assuming that the base acceleration can be expressed as a white
noise random process. Although several previous investigations have dealt with the determination of
the optimal parameters, in this study the non symmetrical action of the damping forces, as shown by
Wu and Hsieh [5], are explicity considered in the derivation of the optimal tuning parameters of the
BTLCD. Based on this characterisation, the optimum parameters minimising the mean square
displacement of the controlled structure are found for both directions. The optimal design
parameters of the device are presented as functions of the mass ratio, u, the shape factor of the
device, {, the ratio of the cross-sections of the vertical and horizontal parts of the device, v, and the
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critical damping ratio for the primary structure, ;. Finally, an optimal design procedure for BTLCD in
several degrees of freedom structures is proposed.

2 BTLCD description

The device proposed is shown in Fig.1, and can be regarded as four single TLCDs combined in one
unit. The configuration of the BTLCD, which in plan view has the shape of an annular rectangle, can be
adjusted to two different frequencies of oscillation by modifying the total length of the liquid
conduits. A restriction or orifice located in the mid-point of the horizontal tanks is used to control the
damping of the oscillation of the liquid inside the device. For the purpose of describing the motion of
the liquid mass inside the BTLCD, two degrees of freedom are selected: displacement of the liquid in
the containers parallel to the X direction, ug,, and displacement of the liquid in the containers
parallel to the Y direction, ug,.
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Fig. 1 — Schematic view of the BTLCD and its main geometrical properties.

The proposed BTLCD also requires less liquid compared with other configurations. In using two single
and perpendicular TLCDs, it can be seen that when the oscillation is in one of the principal directions,
the liquid in the TLCD oriented perpendicular to this direction performs no useful function, and it
becomes a penalty mass. In the BTLCD, it is only the liquid inside the horizontal conduits between the
vertical columns that has no use under this condition. The use of TLCDs in a crossed configuration also
requires a greater amount of liquid than the proposed BTLCD. This is due to the fact that the BTLCD,
understood as four single TLCDs, shares the vertical columns, there being no requirement for
individual vertical columns for each of the four TLCDs.

3 BTLCD and the controlled structure equations of motion

The system under investigation is shown in Fig.2 and can be separated into two substructures. One of
them is the BTLCD and the other is the two-DOF primary structure. As indicated in Section 2, the
motion of the liquid inside the BTLCD is defined by ug, and ugy, which measure the displacement of
the liquid relative to the mass of the primary structure in the X and Y directions, respectively. The
motion of the primary structure is described using the degrees of freedom x and y, which measure
the relative motion between its mass and the ground in the X and Y directions, respectively. If the
entire system is now subject to a base acceleration defined by i, and i, then the equations of
motion of the system can be derived using the Lagrange equations, [15].
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Fig. 2 — A two degrees of freedom primary structure with a bidirectional tuned liquid column damper.

where T and V correspond to the total kinetic energy and the total potential energy of the system, g;
is the i-th generalised coordinate, Q;is the generalised non conservative force associated with g;, nis
the total number of degrees of freedom of the system, four in this case, and t is the time.

Assuming that the fluid is incompressible and the transverse velocity profile of the liquid is constant,
implying that the fluid flux is turbulent, the kinetic energy and the potential energy for the entire
system can be readily obtained. The equations of motion of the system can now be obtained by
substituting the corresponding terms into the Lagrangian equations. By doing so we obtain:

Mpx + CoX + Kyx = —Mypilg, + Caxllgy — Mpyilay
Mry + Cyy + Kyy = —Mrilgy + cayllay — Mpytllay ¥
Mexllay + VxCaxUax + KaxUax = —MpyxUs (ilsy + %)

meyiidy + UyCdyudy + kdyudy = —mhyvy(ilsy + y)J

4)

where the coefficients ¢4, and cq,, are the linear equivalent damping forces of the device [6], My =
my, + my +m,y, is the total mass of the system; m;, = AyLyps and my, = A, L,py are the liquid
mass inside the horizontal conduits parallel to the X and Y directions, respectively; v, = A, /A, and
v, = A, /A, are the quotients between the areas of the vertical columns and the the horizontal
conduits in the X and Y directions, respectively; m,, and m,,, are the effective liquid masses in the X
and Y directions, and are defined by: m,, = AyLeypy and myy, = Ay Loy py where Loy = UxLy + 2L,
and L.y, = v, L, + 2L, are the effective lengths in the X and Y directions; and finally kg, = 24,prg
and kg, = 24,,prg are the equivalent stiffnesses of the device.

In order to obtain more general results from the equations of motion, the system of Eqgs. (4) can be
rewritten using nondimensional parameters, resulting in the following system of equations:

I . 2 _ I . 2 ..
axXx + Zaxwpx€pxx + Ay Wpx X = —AzUgy + dexfdx.uxudx — Uy Ugy \
.o . 2 — .o . _ 2 .o
ayy + 20y Wpy$pyY + aywpyy = —ayllsy + 20qySaylylay — Ayllay (5)
gy + 2V WaxEaxlige T WaxUagy = — Uy (ilgy + X)
dx xPdxSdxUdx dx%dx xVx\Usx J
. . 2 _ .o .o
Ugy + 20,0ay8ayllay + WayUay = —ayvy(usy + y)
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In the system of Egs. (5), the parameters wgx =+/2g/Lex and wgy, = /29/Le, are the natural
frequencies of oscillation of the device; wy,y = /Kx/My and w,, = /K, /My are the frequencies of
oscillation of a structure with the same stiffness as the primary structure, but with a mass equal to the
total mass of the system; $yy = Cax/2Mexwgy and &yy = Cuy/2Mey g, are the critical damping
ratios of the device; ¢,y = C/2Mrwyy, and &, = C,,/2Mrw,,, are the critical damping ratios of the
structure with the same stiffness as the primary structure, but with a mass equal to the total mass of
the system. The parameters a, = Ly/L.x and @, =L, /L., can be related to the terms: {, =
Ly/(Ly + 2L,) and {), = Ly/(Ly + 2Ly) which essentially define the shape factors of the device. It is
clear that whenv, = v, = L,then a, = {y and ay, = (,,.

3.1 Equivalent damping for random base acceleration

The nonlinear equations of motion derived in the previous section can be replaced by equivalent
linear ones with known solutions. The difference, or error, between the linear equivalent
representation and the actual nonlinear one can be written as: & = c iy — Cyr(Ug, Ug) Uy
(directional subscripts will be omitted for clarity), where Cy; (14, 1tg) represent in general terms the
nonlinear damping force. In this case, the expression of Cy;(ug4, 14) is a function of the flow
resistance. Assuming the flow is turbulent [16], and minimising the mean square value of the error,

E{&?}, it can be shown that: [17, 18]
2 2
Ca = |—prAVTNOy, 3

Where is assumed that the probability density function of the nonlinear damping force is Gaussian
[17, 6, 18]. The Eq. (8) can be rewritten as:

Mewgéq
=\V2T— 9

From the Eq. (9), the flow resistance coefficient can be obtained as a function of the frequency of
oscillation, wg, and the critical damping ratio of the device, &;.

4 BTLCD Optimum design parameters for random white noise base acceleration

4.1 Undamped primary structure

Assuming that the base acceleration is represented by a Gaussian white noise process with constant
power spectral density iig,, response of the primary structure can be expressed as [19]: E{x?} =
ilg, ffooo|Hx(w)|2dw, where H, (w) is the transfer function between the base acceleration and the
displacement of the primary structure in the X direction, using integral tables [19] the the mean
square displacement can be written as

2
. By (AA; — A1 A,) — A3 (B? + 2ByB,) + A, B2
Tu A 3 3471
so 0

0);3; A;(AzA3 — A1Ay) — AgA3
The terms 4 and B are detailed:

E{x?} =

(13)

Ay = f? Azz_(l +f2+4€p€df) Ay =1—-pav By = =2f&u(1+ )
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Ay =2f(f& +véa) Ay =-2(& +Eafv(l+ W)  Bo=—f? By =1— pav (12)
where f = w,/w, is the frequency ratio. Returning to Eq. (13), the mean square of the displacement
of the primary structure can be obtained as a function of y, &,, a, v, {; andf. The value of £, is mainly
given by the problem itself, and can be related to ¢ and a. The parameters u, a and v can be
determined by the designer at an early stage. It can also be shown that the optimal value of v is 1 [6],
and as the value of { ({ = @ when v = 1) approaches to 1, the reduction in the response of the
primary structure increases [6, 20]. This implies that a device with equal cross-sections (4, = A, =
A,) and with the largest possible horizontal dimension is always preferable. Of course, it is not always
possible to obtain these conditions, but they nevertheless represent a desirable design. For instance,
architectonic restrictions may not allow large plan dimensions of the device, forcing the reduction of
the shape factor {. The values of f and &, that minimize E{x?}, given by the Eq. (13) can be expressed
as indicated in Eq. (19) and Eq. (20):

2uav [u(l —av(2+w)+1- %av] +2av —pu

Florr = 1+w [Z,uav (y + %) + 2av — u] )
Ealomn = @ U [4;120(1)(0(2)(;1 +2)—1)+ 6uav (% av — 1) +u-— 4av] 20)

2 [Zuav (,u + %) + 2av — u] [2u2av(av(u +2)—1)+ 2uav (%av — 1) —2av + u]

4.1 Damped primary structure

Unlike the previous case, obtaining closed expressions for the optimum design parameters f and &, is
far too complex, and a numerical optimisation procedure must be used instead. Here we use the
normalised mean square of the displacement of the primary structure as the parameter to be
minimised, i.e.: E{x?} = E{x?}/E*{x?}, where E*{x?} is the mean square of the displacement of the
structure, with the same stiffness and damping as the structure to be controlled, but with a mass
equal to the total mass of the system. In order to provide design expressions that cover most practical
cases, the numerical optimisation was performed considering the following range of values: 0.001 <
u<0.15;04 < a <0.95;0.005 < Ep <0.landv=1.

In the Fig.5 the results of the numerical optimisation procedure are shown. The following numerical
expression for the optimum frequency ratio, f|opr, as function of y, a, and &, for v = 1 is proposed.

f|0PT=f|0PT(fp =0)+ /1—255—1+Af (22)

where the first term of the right-hand side of Eq. (22) is the optimum frequency ratio for the
undamped primary structure, Eq. (19), and Af is the difference between these terms and the optimal
frequency ratio obtained by the numerical optimisation procedure. Using curve fitting, Af can be
adjusted as a power function of u, as shown in Eq. (23). This equation used in combination with the
Eqg. (22), gives a close approximation to the optimal frequency ratio found by numerical optimisation
procedure.

Af = (1.2a + 1.285)619u[(2.346—0.793a)55+(0.67a—1.4-92)5p+0.466] (23)
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The values of the optimum critical damping ratio of the device can also be adjusted using curve fitting.
In this case the optimal damping ratio can be written as:

¢alopr = flePT(Ep = 0) — A&y (24)
where Aé,; is the difference between the optimum damping values for undamped primary structure,
Eg. (20), and those obtained by the numerical optimisation procedure for the damped primary
structure. The difference Aé,, is again adjusted as a power function in y, for v = 1, as follows:

A&, = (0.557 — 0.235a)¢& u[(8.955a—31.243)5,2,+(1.738—0.7820:)5,,+0.953—0.1690¢] (25)
. . p

C=045 C=106 (=045

u ! Iz
Fig. 5 — Optimum frequency and critical damping ratios values forv = 1

5 BTLCD for several degrees of freedom structures

Considering a several degrees of freedom structure with BTLCD, the equations of motion can be found
by means of the Lagrange equations for the system, which can be written in vector notation as [15]:

d {E)T} {E)T} N {E)V} o 26
dt (oU au aus ¢ (26)
In this case we have a total of 2N + 2 equations of motion, N being the total number of levels of the

primary structure. Once the kinetic energy and potential energy are found, the equations of motion of
the entire system can be written as:

[Mp] y [Mpd] - {Up} [Cp] [de] {UP}
T Mex /Uy 0 Ugy ¢t Cax 0 Ugy
[Mpa] [ 0 mey/vy]_ Ugy [0] [ 0 cdy] Ugy
+ [Kax/Ux 0 Ugx (= — Mey 0 i
(0] I dO kdy/vy] uzy [Mpd]T [ 0 mgy (o]
where
0 1 0 0 0
L] = [0 0 0 1 0 (28)
1 i L+ N 2N
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and

[1,] =[] + [ 5™

O 12 L 170 R S R (o B O (31)
where {U,} are the degrees of freedom of the primary structure, [r] is the influence matrix of{U,,},
and {ug} = (usx,usy)T is the vector of the external displacements. It should be noted that the (1,i)
and (2, N + i) components of the influence matrix should be equal to 1, [M,], [C,] and [K,] are the
mass damping and stifness matrix of the primary structure.

Examining the system of Egs. (29), it remains clear that the damping matrix is non symetrical. The last
two equations of the system of Egs. (29), which describe the motion of the liquid inside the device,
remain as:

Mexlax + VxCaxlax + KaxUax = —MpxVx (lsy + ;) (32)
Meyllqy + Uy Caylay + kaylUay = —mhyvy(ilsy + ill-+N)
The first 2N equations of the system of Egs. (29) can be rewritten in terms of modal coordinates,
{Up} = [®]{q}, after premultiplying these equations by [®]7. Assuming classic damping matrix of the
primary structure, we can write the j-th equation of Egs. (29) as follows:

2N
m;g; + ¢iq; + kjqj = — Z G, Myt — ¢y ;[ (my +my) (i + i) = Caxliax + Mpxliay]
k=1
—dian i [(mp + my) ey +is) — Caytlay + MpyUay ] (33)
If we need to control vibrational modes along two orthogonal directions simultaneously, and these
modes are widely representative of the structural response, we can express the displacements of the
i-th level of the primary structure as: u; = ¢; q, ; Uj4ny = @ity sqs, Where 7 and s are the controlled
modes in two perpendicular directions. Using the foregoing approximations, the Eq. (33) can be
reduced to the following two equations of motion for the coordinates u; and u;,y:

(i + mp +my)iy; + 6 + kyuy = —(6M, + mp + my,)ils + Caxllae — Maxilax 34)
(fﬁs +mg + mu)ili+N + CsUjyny + ksuiy = —(stﬁs +my + mu)ils + Caylay — Mpyligy
where M, =m,/¢?., é =c./¢p? and k. =k./¢?., the definitions of terms i, & and ks are
analogous but in this case use i + N instead ofi. A closer look at the latter definitions shows that the
optimal location of the device should at the position with the largest modal component. This reduces
the mass of the equivalent structure, 7, to its minimum possible value, thereby yielding the largest
posible mass ratio between the device and the equivalent structure. If we examine the system of Egs.
(34) and the Eqgs. (32), and compare them with the system of Egs. (4), it remains clear that they differ
only in the terms I;. and [5.

6 BTLCD design example

A BTLCD will be designed to control the response of the first two perpendicular modes shapes of a 50
story building, with a total mass 25000[ton] evenly distributed in each story. The periods of oscillation
of these two modes are 6.5[seg] in X direction, and 5.5[seg] in Y direction, and for both modes 0.01
critical damping ratio is considered. As can be seen in left of Fig.9, the optimal location of the device
correspond in this case to the roof. The equivalents properties of the single degree of freedom

8
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Hron] 12625[ton], effective stiffness in X

structures are: effective mass in X direction: M, = —~——:
direction: k; = (1[ton] - (2r/6.5[seg])?)/0.0089% = 11796.5[kN /m], effective mass in Y direction:
my, = 01([):;;1]2 = 11317[ton], effective stiffness in Y direction k, =
(1[ton] - (2m/5.5[seg])?)/0.0094% = 14770[kN /m]
Elevation X direction Elevation Y direction
0.0089 0.0094 i — "L‘F —
- — EE— N
— — i
— — 3D view of the BTLCD
— f — [Note: Dimensions in [em] |
X

T, =6.5 [seg] T, =5.5 [seg]
First mode (X direction) Second mode (Y direction) Y.
Fig. 9 — First and second mode shapes of the example structure (left). Right figure showns the BTLCD along with

its main dimensions.

The BTLCD for controlling the first and second mode of the building example is shown in the right side
of Fig.9. The actual total liquid mass inside the BTLCD reach the 877.6[ton], its important to note that
if the BTLCD is replaced by two equivalents and independent TLCD, the total liquid mass will reach in
this case to 1147[ton], which is 30.7% larger than the liquid mass of the proposed BTLCD. To verify
the effectiveness of the proposed device, the roof displacement and accelerations time histories of
the example structure, with and without the proposed BTLCD are shown in Fig.11. The system is
excited by three seismic records of the 2010 M,,, = 8.8 Chilean earthquake obtained by the University
of Chile and available to the scientific community (http://terremotos.ing.uchile.cl), the Oshika-Miyaki
seismic record from 2011 M,, = 9.1 Japan eartquake taken from the Japanese seismic network of
strong-motion stations (http://www.k-net.bosai.go.jp/), and the 1940 El Centro earthquake M,, = 6.9
record from COSMOS earthquake web site (http://db.cosmoseq.org/). The BTLCD designed according
the optimal parameters and the proposed procedure, performs well for all the eartquake excitations.
Stand out the reduction of the maximum roof displacement and also the rapid response decay.
Nevertheless, as can be shown from Fid. 11 and Fig 12, the reductions in acceleration are negligible.
The main purpose of the device in this particular example is to control the responses of the two first
vibration modes. These modes of large periods of oscillation have low spectral accelerations
associated with them, and controlling their responses therefore has only a limited influence on the
accelerations. On the other hand, the spectral displacements in the period ranges of the two first
modes are important, and therefore the control of their responses leads to an important reduction in
the displacements, as is evident in the example. If the purpose is mainly to reduce the acceleration
response of the primary structure, then the BTLCD should be designed to control higher modes, with

higher spectral accelerations in their period ranges.
9
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Ground acceleration [m/s2] Roof displacement [m] Roof acceleration [m/s?] Ground acceleration [m/<] Roof displacement [rr] Roof acceleration [m /7]
1 5 1 10

n+ 0
-2
-4 -5
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u«w——— o
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Time [seg] Time [seg] Time [seg] Time [seg] Time [seg] Time [seg]

Fig. 11 — Ground accelerations applied to system base in X directions, left, and Y directions, right. The corresponding roof
displacements and accelerations before and after installing optimal BTLCD are shown in red and blue lines respectively.
Total liquid mass versus total mass of primary structure ratio equal to 0.035 (3.5%).

7 Conclusions

In the present study we have proposed the use of a new device that acts as two independent and
orthogonal TLCDs combined in one single BTLCD unit, for the purpose of controlling the seismic
response of structures that have vibrations occurring essentially in two mutually perpendicular
directions. First the BTLCD was used as a seismic control device for two DOF structures. Using an
equivalent linear formulation of the nonlinear forces from the liquid flow inside the device, by means
of Lagrangian dynamics it was possible to write a set of linear equations of motion of the BTLCD and
the two DOF primary structure to be controlled. The optimal tuning parameters of the BTLCD were
then obtained by minimising the response of the primary structure when subject to white noise base
acceleration. The reductions in the mean square value of the primary structure displacement show
that the effectiveness of the BTLCD is greater when it is used to control low damped structures. As the
damping of the structure increases the reductions become smaller; however, in these cases the use of
energy dissipation devices is usually unnecessary. The application of the BTLCD in structures with
several degrees of freedom was also studied. In this case the equations of motion of the BTLCD and
the primary structure were written using the vector formulation of Lagrangian dynamics, which leads
to a system of equations that can be reduced if the response of the primary structure occurs mainly in
two perpendicular modes. Using this consideration, the system of equations was transformed into a
system which is similar to the system of equations for the BTLCD and the two DOF primary structure.
The optimal tuning parameter found can then be used to design the BTLCD as a seismic control device
for multiple DOF structures. An iterative method of rapid convergence to facilitate the design of the

10
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device is proposed. Finally, the example of a 50-storey structure was analysed under the action of five
seismic records with and without the BTLCD. The results show that the device performs well, and the
reduction of the structure displacement and the rapid response decay obtained revealed that the
device increases the damping of the controlled structure.
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