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Abstract 

In this article a new bidirectional tuned liquid column damper (BTLCD) is proposed for controlling the seismic response of 
structures. The device acts as two independent and orthogonal tuned liquid column dampers (TLCDs), but due to its 
configuration it requires less liquid than two equivalent independent TLCDs. The equations of motion of the system 
formed by the BTLCD and the primary structure to be controlled, are obtained by means of Lagrangian dynamics explicity 
considering the non symetrical action of the damping forces. First, the primary structure was assumed to have two 
degrees of freedom (DOFs). Assuming that the system is excited by a base acceleration that can be considered to be a 
white noise random process, the optimum design parameters of the device were obtained to minimise the response of 
the primary structure. The optimum design parameters are presented as expressions covering a wide range of possible 
configurations for the device in a controlled structure. The use of a BTLCD to control the seismic response of several DOF 
structures was also studied, showing that if the structural response occurs mainly in two perpendicular modes, then the 
optimum design parameters for two DOF structures can be used. Finally, experimental analysis of the BTLCD for 
controlling the seismic response of a six DOF scale model are developed in order to verify the effectiveness and accuracy 
of the equations and design procedures proposed herein. 
 
Keywords: Bidirectional, Tuned liquid column damper, vibration control, optimal control, passive dampers, vibrations 

1 Introduction 

More than 50% of the world's population lives in cities. The continuous growth of urban areas, 
together with the development of modern construction techniques, have resulted in an increasing 
number of tall buildings. These types of structures are characterised by its flexibility, with long 
vibration periods and low intrinsic damping. Consequently, when subjected to dynamic loads such as 
earthquakes, tall buildings develop oscillations that may persist long after the events themselves have 
ceased. The vibration levels of such structures may exceed the serviceability criteria, causing 
discomfort to occupants. In some cases the vibration may even be greater than agreed safe levels, 
causing possible damage to nonstructural or structural components. Several devices have been 
proposed to reduce the structural response of tall buildings. Among these, passive energy dissipation 
devices have been widely accepted and used in several structures [1]. These type of devices absorbs 
part of the energy supplied to the structure by external actions, such as winds or earthquakes, 
thereby reducing its response. Although there are many kinds of passive dampers, tuned liquid 
dampers (TLD) stand out due to its advantages, such as their low cost of manufacture and 
maintenance. There is also practically no weight penalty to the building if the water is used for other 
purposes such as to prevent the spread of fire, or for drinking. 
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One key type of TLD is the tuned liquid column damper (TLCD). First proposed by Sakai et al. [2], in 
essence this device consists of a U-shaped liquid tank. When the device is subject to an external 
perturbation causing a displacement of the free Surface of the liquid, gravity acts as a restoring force, 
allowing it to oscillate. A restriction is positioned in the centre of the horizontal section of the device, 
which together with the friction, and the sudden change in flow direction between the horizontal and 
vertical sections, produces an energy dissipation mechanism that dampens the oscillation of the 
liquid. Several investigations have been carried out to the determine the optimum design parameters 
of TLCDs. Gao et al. [3] studied TLCD optimisation for sinusoidal type excitations by numerical means. 
Kareem and Yalla [28] determined the optimum design parameters for one-DOF primary structures 
subjected to random-type actions. More recently Shum et al. [4] proposed optimal tuning parameters 
for base-excited damped structures. Considering the nonclassical nature of the damping forces, Wu 
and Hsieh studied the dynamic characteristics of the TLCD, and showed the existence of two coupled 
natural frequencies between the primary structure and the device [5]. Wu et al. proposed a design 
guide for TLCDs and primary structures subject to random wind loading [6]. Ghosh and Basu [7, 8] 
studied an alternative TLCD configuration to control short period and nonlinear structures, connecting 
the device via a spring to the primary structure to be controlled. Another option for controlling short-
period oscillations is the use of pressurized air columns as shown by Shum et al. [9]. The use of 
multiple TLCDs for seismic applications has also been studied, showing that the use of such 
configurations does not necessarily imply an improvement in structural control compared with a 
single TLCD. However, their use increases robustness with respect to errors in estimating the dynamic 
parameters of the controlled structure [10, 11]. Multiple TLCDs have also been studied for the 
reduction of coupled lateral and torsional vibrations in long span bridges [12, 9]. 
Although the use of TLCDs can be an efficient way of reducing the response of buildings, one major 
disadvantage is their inability to act in two perpendicular directions. This can be very useful for 
controlling the structural response of buildings for two perpendicular modes with high participation 
factors, as in the case of several tall buildings. The vibrational control of such structures using TLCDs 
has been the subject of research by various investigators. One of the first attempts to use a 
bidirectional TLCD was made by P.A. Hitchcock in 1997. The device can be regarded as several TLCDs 
that share a common horizontal mass of water [13]. In 2010, Lee et al. Proposed the use of a 
bidirectional tuned and sloshing damper, which acts as a TLCD in one direction and as a sloshing 
damper in the perpendicular direction [14]. 
In this paper a new bidirectional tuned liquid column damper is proposed. The device acts like a TLCD 
in two orthogonal directions; thanks to its configuration, the mass of liquid required is reduced 
compared with two independent TLCDs. The first objective of this study was to derive the equations 
of motion of the system formed by the BTLCD and the primary structure to be controlled, when both 
are subject to a base acceleration. The formulation of the equations of motion, by means of 
Lagrangian dynamics, explicitly considers the non-classical damping inherent in the system. The 
optimal parameters are derived assuming that the base acceleration can be expressed as a white 
noise random process. Although several previous investigations have dealt with the determination of 
the optimal parameters, in this study the non symmetrical action of the damping forces, as shown by 
Wu and Hsieh [5], are explicity considered in the derivation of the optimal tuning parameters of the 
BTLCD. Based on this characterisation, the optimum parameters minimising the mean square 
displacement of the controlled structure are found for both directions. The optimal design 
parameters of the device are presented as functions of the mass ratio, 𝜇, the shape factor of the 
device, 𝜁, the ratio of the cross-sections of the vertical and horizontal parts of the device, 𝜐, and the 
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critical damping ratio for the primary structure, 𝜉𝑝. Finally, an optimal design procedure for BTLCD in 

several degrees of freedom structures is proposed.  

2 BTLCD description 

The device proposed is shown in Fig.1, and can be regarded as four single TLCDs combined in one 
unit. The configuration of the BTLCD, which in plan view has the shape of an annular rectangle, can be 
adjusted to two different frequencies of oscillation by modifying the total length of the liquid 
conduits. A restriction or orifice located in the mid-point of the horizontal tanks is used to control the 
damping of the oscillation of the liquid inside the device. For the purpose of describing the motion of 
the liquid mass inside the BTLCD, two degrees of freedom are selected: displacement of the liquid in 
the containers parallel to the 𝑋 direction, 𝑢𝑑𝑥, and displacement of the liquid in the containers 
parallel to the 𝑌 direction, 𝑢𝑑𝑦.  

 

 
Fig. 1 – Schematic view of the BTLCD and its main geometrical properties. 

The proposed BTLCD also requires less liquid compared with other configurations. In using two single 
and perpendicular TLCDs, it can be seen that when the oscillation is in one of the principal directions, 
the liquid in the TLCD oriented perpendicular to this direction performs no useful function, and it  
becomes a penalty mass. In the BTLCD, it is only the liquid inside the horizontal conduits between the 
vertical columns that has no use under this condition. The use of TLCDs in a crossed configuration also 
requires a greater amount of liquid than the proposed BTLCD. This is due to the fact that the BTLCD, 
understood as four single TLCDs, shares the vertical columns, there being no requirement for 
individual vertical columns for each of the four TLCDs. 

3 BTLCD and the controlled structure equations of motion 

The system under investigation is shown in Fig.2 and can be separated into two substructures. One of 
them is the BTLCD and the other is the two-DOF primary structure. As indicated in Section 2, the 
motion of the liquid inside the BTLCD is defined by 𝑢𝑑𝑥  and 𝑢𝑑𝑦, which measure the displacement of 

the liquid relative to the mass of the primary structure in the 𝑋 and 𝑌 directions, respectively. The 
motion of the primary structure is described using the degrees of freedom 𝑥 and 𝑦, which measure 
the relative motion between its mass and the ground in the 𝑋 and 𝑌 directions, respectively. If the 
entire system is now subject to a base acceleration defined by 𝑢̈𝑠𝑥  and 𝑢̈𝑠𝑦, then the equations of 

motion of the system can be derived using the Lagrange equations, [15].  
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Fig. 2 – A two degrees of freedom primary structure with a bidirectional tuned liquid column damper. 

 
where 𝑇 and 𝑉 correspond to the total kinetic energy and the total potential energy of the system, 𝑞𝑖 
is the i-th generalised coordinate, 𝑄𝑖is the generalised non conservative force associated with 𝑞𝑖, n is 
the total number of degrees of freedom of the system, four in this case, and 𝑡 is the time. 
Assuming that the fluid is incompressible and the transverse velocity profile of the liquid is constant, 
implying that the fluid flux is turbulent, the kinetic energy and the potential energy for the entire 
system can be readily obtained. The equations of motion of the system can now be obtained by 
substituting the corresponding terms into the Lagrangian equations. By doing so we obtain: 
 
𝑀𝑇𝑥̈ + 𝐶𝑥𝑥̇ + 𝐾𝑥𝑥 = −𝑀𝑇𝑢̈𝑠𝑥 + 𝑐𝑑𝑥𝑢̇𝑑𝑥 −𝑚ℎ𝑥𝑢̈𝑑𝑥
𝑀𝑇𝑦̈ + 𝐶𝑦𝑦̇ + 𝐾𝑦𝑦 = −𝑀𝑇𝑢̈𝑠𝑦 + 𝑐𝑑𝑦𝑢̇𝑑𝑦 −𝑚ℎ𝑦𝑢̈𝑑𝑦
𝑚𝑒𝑥𝑢̈𝑑𝑥 + 𝜐𝑥𝑐𝑑𝑥𝑢̇𝑑𝑥 + 𝑘𝑑𝑥𝑢𝑑𝑥 = −𝑚ℎ𝑥𝜐𝑥(𝑢̈𝑠𝑥 + 𝑥̈)

𝑚𝑒𝑦𝑢̈𝑑𝑦 + 𝜐𝑦𝑐𝑑𝑦𝑢̇𝑑𝑦 + 𝑘𝑑𝑦𝑢𝑑𝑦 = −𝑚ℎ𝑦𝜐𝑦(𝑢̈𝑠𝑦 + 𝑦̈)}
 
 

 
 

          (4) 

 
where the coefficients 𝑐𝑑𝑥 and 𝑐𝑑𝑦 are the linear equivalent damping forces of the device [6], 𝑀𝑇 =

𝑚𝑝 +𝑚𝑓 +𝑚𝑢 is the total mass of the system; 𝑚ℎ𝑥 = 𝐴𝑥𝐿𝑥𝜌𝑓 and 𝑚ℎ𝑦 = 𝐴𝑦𝐿𝑦𝜌𝑓  are the liquid 

mass inside the horizontal conduits parallel to the 𝑋 and 𝑌 directions, respectively; 𝜐𝑥 = 𝐴𝑣/𝐴𝑥 and 
𝜐𝑦 = 𝐴𝑣/𝐴𝑦 are the quotients between the areas of the vertical columns and the the horizontal 

conduits in the 𝑋 and 𝑌 directions, respectively; 𝑚𝑒𝑥 and 𝑚𝑒𝑦 are the effective liquid masses in the 𝑋 

and 𝑌 directions, and are defined by: 𝑚𝑒𝑥 = 𝐴𝑥𝐿𝑒𝑥𝜌𝑓 and 𝑚𝑒𝑦 = 𝐴𝑦𝐿𝑒𝑦𝜌𝑓 where 𝐿𝑒𝑥 = 𝜐𝑥𝐿𝑥 + 2𝐿𝑣  

and 𝐿𝑒𝑦 = 𝜐𝑦𝐿𝑦 + 2𝐿𝑣 are the effective lengths in the 𝑋 and 𝑌 directions; and finally 𝑘𝑑𝑥 = 2𝐴𝑥𝜌𝑓𝑔 

and 𝑘𝑑𝑦 = 2𝐴𝑦𝜌𝑓𝑔 are the equivalent stiffnesses of the device. 

In order to obtain more general results from the equations of motion, the system of Eqs. (4) can be 
rewritten using nondimensional parameters, resulting in the following system of equations: 
 
𝛼𝑥𝑥̈ + 2𝛼𝑥𝜔𝑝𝑥𝜉𝑝𝑥𝑥̇ + 𝛼𝑥𝜔𝑝𝑥

2 𝑥 = −𝛼𝑧𝑢̈𝑠𝑥 + 2𝜔𝑑𝑥𝜉𝑑𝑥𝜇𝑥𝑢̇𝑑𝑥 − 𝛼𝑥
2𝑢̈𝑑𝑥

𝛼𝑦𝑦̈ + 2𝛼𝑦𝜔𝑝𝑦𝜉𝑝𝑦𝑦̇ + 𝛼𝑦𝜔𝑝𝑦
2 𝑦 = −𝛼𝑦𝑢̈𝑠𝑦 + 2𝜔𝑑𝑦𝜉𝑑𝑦𝜇𝑦𝑢̇𝑑𝑦 − 𝛼𝑦

2𝑢̈𝑑𝑦

𝑢̈𝑑𝑥 + 2𝜐𝑥𝜔𝑑𝑥𝜉𝑑𝑥𝑢̇𝑑𝑥 + 𝜔𝑑𝑥
2 𝑢𝑑𝑥 = −𝛼𝑥𝜐𝑥(𝑢̈𝑠𝑥 + 𝑥̈)

𝑢̈𝑑𝑦 + 2𝜐𝑦𝜔𝑑𝑦𝜉𝑑𝑦𝑢̇𝑑𝑦 + 𝜔𝑑𝑦
2 𝑢𝑑𝑦 = −𝛼𝑦𝜐𝑦(𝑢̈𝑠𝑦 + 𝑦̈) }

 
 

 
 

   (5) 



XI Congreso Chileno de Sismología e Ingeniería Sísmica ACHISINA 2015 Santiago de Chile, 18-20 de Marzo, 2015 

 

5 

 

In the system of Eqs. (5), the parameters  𝜔𝑑𝑥 = √2𝑔/𝐿𝑒𝑥 and 𝜔𝑑𝑦 = √2𝑔/𝐿𝑒𝑦 are the natural 

frequencies of oscillation of the device; 𝜔𝑝𝑥 = √𝐾𝑥/𝑀𝑇 and 𝜔𝑝𝑦 = √𝐾𝑦/𝑀𝑇 are the frequencies of 

oscillation of a structure with the same stiffness as the primary structure, but with a mass equal to the 
total mass of the system; 𝜉𝑑𝑥 = 𝑐𝑑𝑥/2𝑚𝑒𝑥𝜔𝑑𝑥 and 𝜉𝑑𝑦 = 𝑐𝑑𝑦/2𝑚𝑒𝑦𝜔𝑑𝑦 are the critical damping 

ratios of the device; 𝜉𝑝𝑥 = 𝐶𝑥/2𝑀𝑇𝜔𝑝𝑥 and 𝜉𝑝𝑦 = 𝐶𝑦/2𝑀𝑇𝜔𝑝𝑦 are the critical damping ratios of the 

structure with the same stiffness as the primary structure, but with a mass equal to the total mass of 
the system. The parameters 𝛼𝑥 = 𝐿𝑥/𝐿𝑒𝑥 and 𝛼𝑦 = 𝐿𝑦/𝐿𝑒𝑦 can be related to the terms: 𝜁𝑥 =

𝐿𝑥/(𝐿𝑥 + 2𝐿𝑣) and 𝜁𝑦 = 𝐿𝑦/(𝐿𝑦 + 2𝐿𝑦) which essentially define the shape factors of the device. It is 

clear that when 𝜐𝑥 = 𝜐𝑦 = 1,then 𝛼𝑥 = 𝜁𝑥  and 𝛼𝑦 = 𝜁𝑦.  

3.1  Equivalent damping for random base acceleration 

The nonlinear equations of motion derived in the previous section can be replaced by equivalent 
linear ones with known solutions. The difference, or error, between the linear equivalent 
representation and the actual nonlinear one can be written as: 𝜀 = 𝑐𝑑𝑢̇𝑑 − 𝐶𝑁𝐿(𝑢𝑑, 𝑢̇𝑑)𝑢̇𝑑 
(directional subscripts will be omitted for clarity), where 𝐶𝑁𝐿(𝑢𝑑, 𝑢̇𝑑) represent in general terms the 
nonlinear damping force. In this case, the expression of 𝐶𝑁𝐿(𝑢𝑑, 𝑢̇𝑑) is a function of the flow 
resistance. Assuming the flow is turbulent [16], and minimising the mean square value of the error, 
𝐸{𝜀2}, it can be shown that: [17, 18] 
 

                                                                                  𝑐𝑑 = √
2

𝜋
𝜌𝑓𝐴𝜐

2𝜂𝜎𝑢̇𝑑                                                                               (8) 

Where is assumed that the probability density function of the nonlinear damping force is Gaussian 
[17, 6, 18]. The Eq. (8) can be rewritten as: 
 

                                                                                  𝜂 = √2𝜋
𝑚𝑒𝜔𝑑𝜉𝑑
𝐴𝜐2𝜌𝑓𝜎𝑢̇𝑑

                                                                                (9) 

From the Eq. (9), the flow resistance coefficient can be obtained as a function of the frequency of 
oscillation, 𝜔𝑑, and the critical damping ratio of the device, 𝜉𝑑. 

4 BTLCD Optimum design parameters for random white noise base acceleration 

4.1  Undamped primary structure 

Assuming that the base acceleration is represented by a Gaussian white noise process with constant 
power spectral density 𝑢̈𝑠𝑜, response of the primary structure can be expressed as [19]: 𝐸{𝑥2} =

𝑢̈𝑠𝑜 ∫ |𝐻𝑥(𝜔)|
2𝑑𝜔

∞

−∞
, where 𝐻𝑥(𝜔) is the transfer function between the base acceleration and the 

displacement of the primary structure in the 𝑋 direction, using integral tables [19] the the mean 
square displacement can be written as 

                                       𝐸{𝑥2} =
𝜋𝑢̈𝑠𝑜

𝜔𝑝
3 ∙

(
𝐵0
2

𝐴0
) (𝐴2𝐴3 − 𝐴1𝐴4) − 𝐴3(𝐵1

2 + 2𝐵0𝐵2) + 𝐴1𝐵2
2

𝐴1(𝐴2𝐴3 − 𝐴1𝐴4) − 𝐴0𝐴3
2                                    (13) 

The terms 𝐴 and 𝐵 are detailed: 
 
𝐴0 = 𝑓

2                              𝐴2 = −(1 + 𝑓
2 + 4𝜉𝑝𝜉𝑑𝑓)              𝐴4 = 1 − 𝜇𝛼𝜐          𝐵1 = −2𝑓𝜉𝑑𝜐(1 + 𝜇)                   
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𝐴1 = 2𝑓(𝑓𝜉𝑝 + 𝜐𝜉𝑑)       𝐴3 = −2(𝜉𝑝 + 𝜉𝑑𝑓𝜐(1 + 𝜇))        𝐵0 = −𝑓
2                 𝐵2 = 1 − 𝜇𝛼𝜐                        (12) 

where 𝑓 = 𝜔𝑑/𝜔𝑝 is the frequency ratio. Returning to Eq. (13), the mean square of the displacement 

of the primary structure can be obtained as a function of 𝜇, 𝜉𝑝, 𝛼, 𝜐, 𝜉𝑑 and𝑓. The value of 𝜉𝑝 is mainly 

given by the problem itself, and can be related to 𝜇 and 𝛼. The parameters 𝜇, 𝛼 and 𝜐 can be 
determined by the designer at an early stage. It can also be shown that the optimal value of 𝜐 is 1 [6], 
and as the value of 𝜁 (𝜁 = 𝛼 when 𝜐 = 1) approaches to 1, the reduction in the response of the 
primary structure increases [6, 20]. This implies that a device with equal cross-sections (𝐴𝑣 = 𝐴𝑥 =
𝐴𝑦) and with the largest possible horizontal dimensión is always preferable. Of course, it is not always 

possible to obtain these conditions, but they nevertheless represent a desirable design. For instance, 
architectonic restrictions may not allow large plan dimensions of the device, forcing the reduction of 
the shape factor 𝜁. The values of 𝑓 and 𝜉𝑑 that minimize 𝐸{𝑥2}, given by the Eq. (13) can be expressed 
as indicated in Eq. (19) and Eq. (20): 
 

                                            𝑓|𝑂𝑃𝑇 = √
2𝜇𝛼𝜐 [𝜇(1 − 𝛼𝜐(2 + 𝜇)) + 1 −

3
2
𝛼𝜐] + 2𝛼𝜐 − 𝜇

(1 + 𝜇) [2𝜇𝛼𝜐 (𝜇 +
3
2) + 2𝛼𝜐 − 𝜇]

                                         (19) 

         𝜉𝑑|𝑂𝑃𝑇 =
𝛼

2
√

𝜇 [4𝜇2𝛼𝜐(𝛼𝜐(𝜇 + 2) − 1) + 6𝜇𝛼𝜐 (
5
6𝛼𝜐 − 1) + 𝜇 − 4𝛼𝜐]

[2𝜇𝛼𝜐 (𝜇 +
3
2
) + 2𝛼𝜐 − 𝜇] [2𝜇2𝛼𝜐(𝛼𝜐(𝜇 + 2) − 1) + 2𝜇𝛼𝜐 (

3
2
𝛼𝜐 − 1) − 2𝛼𝜐 + 𝜇]

     (20) 

4.1  Damped primary structure 

Unlike the previous case, obtaining closed expressions for the optimum design parameters 𝑓 and 𝜉𝑑 is 
far too complex, and a numerical optimisation procedure must be used instead. Here we use the 
normalised mean square of the displacement of the primary structure as the parameter to be 
minimised, i.e.: 𝐸̅{𝑥2} = 𝐸{𝑥2} 𝐸∗{𝑥2}⁄ , where 𝐸∗{𝑥2} is the mean square of the displacement of the 
structure, with the same stiffness and damping as the structure to be controlled, but with a mass 
equal to the total mass of the system. In order to provide design expressions that cover most practical 
cases, the numerical optimisation was performed considering the following range of values: 0.001 ≤
𝜇 ≤ 0.15; 0.4 ≤ 𝛼 ≤ 0.95; 0.005 ≤ 𝜉

𝑝
≤ 0.1 and 𝜐 = 1. 

In the Fig.5 the results of the numerical optimisation procedure are shown. The following numerical 
expression for the optimum frequency ratio, 𝑓|𝑂𝑃𝑇, as function of 𝜇, 𝛼, and 𝜉𝑝 for 𝜐 = 1 is proposed. 

 

                                                          𝑓|𝑂𝑃𝑇 = 𝑓|𝑂𝑃𝑇(𝜉𝑝 = 0) +√1 − 2𝜉𝑝
2 − 1 + ∆𝑓                                                    (22) 

where the first term of the right-hand side of Eq. (22) is the optimum frequency ratio for the 
undamped primary structure, Eq. (19), and ∆𝑓 is the difference between these terms and the optimal 
frequency ratio obtained by the numerical optimisation procedure. Using curve fitting, ∆𝑓 can be 
adjusted as a power function of 𝜇, as shown in Eq. (23). This equation used in combination with the 
Eq. (22), gives a close approximation to the optimal frequency ratio found by numerical optimisation 
procedure. 
 

                                        ∆𝑓 = (1.2𝛼 + 1.285)𝜉𝑝µ
[(2.346−0.793𝛼)𝜉𝑝

2+(0.67𝛼−1.492)𝜉𝑝+0.466]                                        (23) 
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The values of the optimum critical damping ratio of the device can also be adjusted using curve fitting. 
In this case the optimal damping ratio can be written as: 
 
                                                                      𝜉𝑑|𝑂𝑃𝑇 = 𝜉𝑑|𝑂𝑃𝑇(𝜉𝑝 = 0) − ∆𝜉𝑑                                                                   (24) 

where ∆𝜉𝑑 is the difference between the optimum damping values for undamped primary structure, 
Eq. (20), and those obtained by the numerical optimisation procedure for the damped primary 
structure. The difference  ∆𝜉𝑑, is again adjusted as a power function in µ, for 𝜐 = 1, as follows: 
 

                            ∆𝜉𝑑 = (0.557 − 0.235𝛼)𝜉𝑝µ
[(8.955𝛼−31.243)𝜉𝑝

2+(1.738−0.782𝛼)𝜉𝑝+0.953−0.169𝛼]                             (25) 
 

 
Fig. 5 – Optimum frequency and critical damping ratios values for 𝜐 = 1 

5 BTLCD for several degrees of freedom structures 

 

Considering a several degrees of freedom structure with BTLCD, the equations of motion can be found 
by means of the Lagrange equations for the system, which can be written in vector notation as [15]: 
 

                                                                        
𝑑

𝑑𝑡
{
𝜕𝑇

𝜕𝑈̇
} − {

𝜕𝑇

𝜕𝑈
} + {

𝜕𝑉

𝜕𝑈
} = {𝑄}                                                                    (26) 

In this case we have a total of 2𝑁 + 2 equations of motion, 𝑁 being the total number of levels of the 
primary structure. Once the kinetic energy and potential energy are found, the equations of motion of 
the entire system can be written as: 
 

[

[𝑀̅𝑝] [𝑀𝑝𝑑]

[𝑀𝑝𝑑]
𝑇

[
𝑚𝑒𝑥 𝜐𝑥⁄ 0

0 𝑚𝑒𝑦 𝜐𝑦⁄ ]
] {

{𝑈̈𝑝}

𝑢̈𝑑𝑥
𝑢̈𝑑𝑦

} + [

[𝐶𝑝] [𝐶𝑝𝑑]

[0] [
𝑐𝑑𝑥 0
0 𝑐𝑑𝑦

]
] {

{𝑈̇𝑝}

𝑢̇𝑑𝑥
𝑢̇𝑑𝑦

}                                                                           

                                       + [

[𝐾𝑝] [0]

[0] [
𝑘𝑑𝑥 𝜐𝑥⁄ 0

0 𝑘𝑑𝑦 𝜐𝑦⁄ ]
] {
{𝑈𝑝}
𝑢𝑑𝑥
𝑢𝑑𝑦

} = − [

[𝑀̅𝑝] [𝑀𝑝𝑑]

[𝑀𝑝𝑑]
𝑇

[
𝑚𝑒𝑥 0
0 𝑚𝑒𝑦

]
] {
[𝑟]
[0]
} {𝑢̈𝑠}            (29) 

 where 
 

                                                  [𝐿]𝑇 = [
0 … 1
0  …
1  𝑖

… 0 0
 0 0
   

 …  
… 1 …
 𝑖 + 𝑁  

0
0
2𝑁
]                                              (28) 
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and 
 

[𝑀̅𝑝] = [𝑀𝑝] + [𝐿] [
𝑚𝑓 +𝑚𝑢 0

0 𝑚𝑓 +𝑚𝑢
] [𝐿]𝑇;   [𝑀𝑝𝑑] = [𝐿] [

𝑚ℎ𝑥 0
0 𝑚ℎ𝑦

] ;    [𝐶𝑝𝑑] = [𝐿] [
𝑐𝑑𝑥 0
0 𝑐𝑑𝑦

]                           (31) 

where {𝑈𝑝} are the degrees of freedom of the primary structure, [𝑟] is the influence matrix of{𝑈𝑝}, 

and {𝑢𝑠} = 〈𝑢𝑠𝑥 , 𝑢𝑠𝑦〉
𝑇 is the vector of the external displacements. It should be noted that the (1, 𝑖) 

and (2, 𝑁 + 𝑖) components of the influence matrix should be equal to 1, [𝑀𝑝], [𝐶𝑝] and [𝐾𝑝] are the 

mass damping and stifness matrix of the primary structure. 
Examining the system of Eqs. (29), it remains clear that the damping matrix is non symetrical. The last 
two equations of the system of Eqs. (29), which describe the motion of the liquid inside the device, 
remain as: 
 
                                                   𝑚𝑒𝑥𝑢̈𝑑𝑥 + 𝜐𝑥𝑐𝑑𝑥𝑢̇𝑑𝑥 + 𝑘𝑑𝑥𝑢𝑑𝑥 = −𝑚ℎ𝑥𝜐𝑥(𝑢̈𝑠𝑥 + 𝑢̈𝑖) 

𝑚𝑒𝑦𝑢̈𝑑𝑦 + 𝜐𝑦𝑐𝑑𝑦𝑢̇𝑑𝑦 + 𝑘𝑑𝑦𝑢𝑑𝑦 = −𝑚ℎ𝑦𝜐𝑦(𝑢̈𝑠𝑦 + 𝑢̈𝑖+𝑁) 

The first 2𝑁 equations of the system of Eqs. (29) can be rewritten in terms of modal coordinates, 

{𝑈𝑝} = [Φ]{𝑞}, after premultiplying these equations by [Φ]𝑇. Assuming classic damping matrix of the 

primary structure, we can write the j-th equation of Eqs. (29) as follows: 
 

𝑚𝑗𝑞̈𝑗 + 𝑐𝑗𝑞̇𝑗 + 𝑘𝑗𝑞𝑗 = −∑𝜙𝑘,𝑗𝑀𝑘𝑢̈𝑠 − 𝜙𝑖,𝑗[(𝑚𝑓 +𝑚𝑢)(𝑢̈𝑖 + 𝑢̈𝑠) − 𝑐𝑑𝑥𝑢̇𝑑𝑥 +𝑚ℎ𝑥𝑢𝑑𝑥]

2𝑁

𝑘=1

                                         

                                                                            −𝜙𝑖+𝑁,𝑗[(𝑚𝑓 +𝑚𝑢)(𝑢̈𝑖+𝑁 + 𝑢̈𝑠) − 𝑐𝑑𝑦𝑢̇𝑑𝑦 +𝑚ℎ𝑦𝑢𝑑𝑦]                  (33) 

If we need to control vibrational modes along two orthogonal directions simultaneously, and these 
modes are widely representative of the structural response, we can express the displacements of the 
i-th level of the primary structure as: 𝑢𝑖 ≈ 𝜙𝑖,𝑟𝑞𝑟 ;  𝑢𝑖+𝑁 ≈ 𝜙𝑖+𝑁,𝑠𝑞𝑠, where 𝑟 and 𝑠 are the controlled 

modes in two perpendicular directions. Using the foregoing approximations, the Eq. (33) can be 
reduced to the following two equations of motion for the coordinates 𝑢𝑖  and 𝑢𝑖+𝑁: 
 
                   (𝑚̃𝑟 +𝑚𝑓 +𝑚𝑢)𝑢̈𝑖 + 𝑐̃𝑟𝑢̇𝑖 + 𝑘𝑟𝑢𝑖 = −(𝛤𝑟𝑚̃𝑟 +𝑚𝑓 +𝑚𝑢)𝑢̈𝑠 + 𝑐𝑑𝑥𝑢̇𝑑𝑥 −𝑚ℎ𝑥𝑢̈𝑑𝑥           

(𝑚̃𝑠 +𝑚𝑓 +𝑚𝑢)𝑢̈𝑖+𝑁 + 𝑐̃𝑠𝑢̇𝑖+𝑁 + 𝑘𝑠𝑢𝑖+𝑁 = −(𝛤𝑠𝑚̃𝑠 +𝑚𝑓 +𝑚𝑢)𝑢̈𝑠 + 𝑐𝑑𝑦𝑢̇𝑑𝑦 −𝑚ℎ𝑦𝑢̈𝑑𝑦           

 
where 𝑚̃𝑟 = 𝑚𝑟 𝜙𝑖,𝑟

2⁄ , 𝑐̃𝑟 = 𝑐𝑟 𝜙𝑖,𝑟
2⁄  and 𝑘̃𝑟 = 𝑘𝑟 𝜙𝑖,𝑟

2⁄ , the definitions of terms 𝑚̃𝑠, 𝑐̃𝑠 and 𝑘̃𝑠 are 

analogous but in this case use 𝑖 + 𝑁 instead of𝑖. A closer look at the latter definitions shows that the 
optimal location of the device should at the position with the largest modal component. This reduces 
the mass of the equivalent structure, 𝑚̃𝑟, to its minimum possible value, thereby yielding the largest 
posible mass ratio between the device and the equivalent structure. If we examine the system of Eqs. 
(34) and the Eqs. (32), and compare them with the system of Eqs. (4), it remains clear that they differ 
only in the terms 𝛤𝑟 and 𝛤𝑠.  

6 BTLCD design example 

A BTLCD will be designed to control the response of the first two perpendicular modes shapes of a 50 
story building, with a total mass 25000[ton] evenly distributed in each story. The periods of oscillation 
of these two modes are 6.5[seg] in 𝑋 direction, and 5.5[seg] in 𝑌 direction, and for both modes 0.01 
critical damping ratio is considered. As can be seen in left of Fig.9, the optimal location of the device 
correspond in this case to the roof. The equivalents properties of the single degree of freedom 

(32) 

(34) 
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structures are: effective mass in 𝑋 direction: 𝑚̃1 =
1[𝑡𝑜𝑛]

0.00892
= 12625[𝑡𝑜𝑛], effective stiffness in 𝑋 

direction: 𝑘̃1 = (1[𝑡𝑜𝑛] ∙ (2𝜋/6.5[𝑠𝑒𝑔])2) 0.00892⁄ = 11796.5[𝑘𝑁/𝑚], effective mass in Y direction: 

𝑚̃2 =
1[𝑡𝑜𝑛]

0.00942
= 11317[𝑡𝑜𝑛], effective stiffness in 𝑌 direction 𝑘̃2 =

(1[𝑡𝑜𝑛] ∙ (2𝜋/5.5[𝑠𝑒𝑔])2) 0.00942⁄ = 14770[𝑘𝑁/𝑚]  
 

 
Fig. 9 – First and second mode shapes of the example structure (left). Right figure showns the BTLCD along with 

its main dimensions. 
 

The BTLCD for controlling the first and second mode of the building example is shown in the right side 
of Fig.9. The actual total liquid mass inside the BTLCD reach the 877.6[𝑡𝑜𝑛], its important to note that 
if the BTLCD is replaced by two equivalents and independent TLCD, the total liquid mass will reach in 
this case to 1147[𝑡𝑜𝑛], which is 30.7% larger than the liquid mass of the proposed BTLCD. To verify 
the effectiveness of the proposed device, the roof displacement and accelerations time histories of 
the example structure, with and without the proposed BTLCD are shown in Fig.11. The system is 
excited by three seismic records of the 2010 𝑀𝑤 = 8.8 Chilean earthquake obtained by the University 
of Chile and available to the scientific community (http://terremotos.ing.uchile.cl), the Oshika-Miyaki 
seismic record from 2011 𝑀𝑤 = 9.1  Japan eartquake taken from the Japanese seismic network of 
strong-motion stations (http://www.k-net.bosai.go.jp/), and the 1940 El Centro earthquake 𝑀𝑤 = 6.9  
record from COSMOS earthquake web site (http://db.cosmoseq.org/). The BTLCD designed according 
the optimal parameters and the proposed procedure, performs well for all the eartquake excitations. 
Stand out the reduction of the máximum roof displacement and also the rapid response decay. 
Nevertheless, as can be shown from Fid. 11 and Fig 12, the reductions in acceleration are negligible. 
The main purpose of the device in this particular example is to control the responses of the two first 
vibration modes. These modes of large periods of oscillation have low spectral accelerations 
associated with them, and controlling their responses therefore has only a limited influence on the 
accelerations. On the other hand, the spectral displacements in the period ranges of the two first 
modes are important, and therefore the control of their responses leads to an important reduction in 
the displacements, as is evident in the example. If the purpose is mainly to reduce the acceleration 
response of the primary structure, then the BTLCD should be designed to control higher modes, with 
higher spectral accelerations in their period ranges. 
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Fig. 11 – Ground accelerations applied to system base in X directions, left, and Y directions, right. The corresponding roof 

displacements and accelerations before and after installing optimal BTLCD are shown in red and blue lines respectively. 

Total liquid mass versus total mass of primary structure ratio equal to 0.035 (3.5%). 

7 Conclusions 

In the present study we have proposed the use of a new device that acts as two independent and 
orthogonal TLCDs combined in one single BTLCD unit, for the purpose of controlling the seismic 
response of structures that have vibrations occurring essentially in two mutually perpendicular 
directions. First the BTLCD was used as a seismic control device for two DOF structures. Using an 
equivalent linear formulation of the nonlinear forces from the liquid flow inside the device, by means 
of Lagrangian dynamics it was possible to write a set of linear equations of motion of the BTLCD and 
the two DOF primary structure to be controlled. The optimal tuning parameters of the BTLCD were 
then obtained by minimising the response of the primary structure when subject to white noise base 
acceleration. The reductions in the mean square value of the primary structure displacement show 
that the effectiveness of the BTLCD is greater when it is used to control low damped structures. As the 
damping of the structure increases the reductions become smaller; however, in these cases the use of 
energy dissipation devices is usually unnecessary. The application of the BTLCD in structures with 
several degrees of freedom was also studied. In this case the equations of motion of the BTLCD and 
the primary structure were written using the vector formulation of Lagrangian dynamics, which leads 
to a system of equations that can be reduced if the response of the primary structure occurs mainly in 
two perpendicular modes. Using this consideration, the system of equations was transformed into a 
system which is similar to the system of equations for the BTLCD and the two DOF primary structure. 
The optimal tuning parameter found can then be used to design the BTLCD as a seismic control device 
for multiple DOF structures. An iterative method of rapid convergence to facilitate the design of the 
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device is proposed. Finally, the example of a 50-storey structure was analysed under the action of five 
seismic records with and without the BTLCD. The results show that the device performs well, and the 
reduction of the structure displacement and the rapid response decay obtained revealed that the 
device increases the damping of the controlled structure. 
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