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ABSTRACT:  
The article describes the development of a Remote Structural Monitoring (RSM) system at University of Chile in 
Chile. Eight accelerometers have been installed on a nine story concrete building at three different heights. 
Additionally three humidity sensors were located beneath it's foundations to evaluate the influence of the soil 
humidity on the structural response. The system consists in an automatic identification algorithm and a 
publishing through open web resources. The article outlines the principal aspects of the system and the variation 
of frequency and damping ratio of the structure under different seismic and weather conditions. The system has 
been operating given free internet access since January 2009. Ambient and earthquake events have been 
recorded. Variation in frequency due to temperature and rain are in order of 2.5%. Damage due to the February 
27, 2010 Chile earthquake were identify by the system.  
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1. INTRODUCTION 
 
The instrumented building called Torre Central was constructed in 1962. It is located at the 
Engineering Faculty of the University of Chile. The building has office and classroom use. It has 9 
stories and 2 underground levels and a total surface of 4602 m2. It has a total height of 30.2 meters and 
a plan area 30 x 19 meters, Fig. 1. The structural system consists on a reinforced concrete shear walls. 
Typical wall thickness is 35 cm. and typical slab thickness is 25 cm. The ratio between total wall area 
to plan area is 7.7 %. 
 

 
 

Figure 1. General Views. 
 
The article presents the equipment, recording process, data transmission, publication and interpretation 
of results of a web based remote structural health monitoring network.  
 
 
 



2. SENSOR ARRAY 
 
2.1. Sensor location 
 
The system has 8 accelerometers, configured in a range +/- 0.25 [g] with two parallel acquisition 
systems: the first one for seismic records without amplification and with a trigger configuration; the 
second with amplification of 10 for ambient vibrations, Fig 2. The accelerometer location is shown in 
Figure 3. 
 
Additionally, three humidity sensors have been installed in a well in the west side of the building. The 
humidity sensors are located at 20, 10 and 5 meters below the surface and they are connected to the 
accelerometers data acquisition system, Fig 4 (a) and (b). 
 
The monitoring system also acquires information from a meteorology station maintained by the 
Meteorology Group of the Department of Geophysics at the University of Chile, Fig 4 (c). The station 
is installed on the roof of the building of the Department of Civil Engineering 40m form the Central 
Tower. Every 15 minutes the station collects data from temperature, precipitation and wind speed, 
among others. 
 

  
 

Figure 2. Accelerometers and acquisition system. 
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Figure 3. Accelerometer location. 
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Figure 4. Sensors: (a) schematic dwell location, (b) well, humidity sensors and (c) meteorology station. 

 
2.1. Network workflow 
 
The structural health monitoring system stores all data in a high store capacity computer, controlled by 
the acquisition system. The computer and acquisition system are located in the first basement of the 
structure. The computer stores and post process the data using two system identification techniques to 
determine modal parameters: Peak Picking and Stochastic Sub-Space Identification (SSI) methods. 
The results are synchronized with Civil Engineering Department Server and publicated on Internet 
(www.ingcivil.uchile.cl/shm). The Fig. 5 shows the network and processing workflow to obtain 
results. 
 

 
 

Figure 5. Structural Health Monitoring network workflow. 
 
To obtain modal parameters from time series, the system is configured to obtain continuous records 
packaged on 15 minutes, 200 Hz frequency rate files. Frequency and damping ratio are updated each 
15 minutes on the web site. 
 
  
2. SYSTEM IDENTIFICATION TECHNIQUE 
 
The Stochastic Subspace Identification (SSI) Technique developed by Van Overschee and De Moor is 
used to estimate modal frequency, damping and operational shapes. This technique uses the stochastic 
state space model, described by equation (1) to identified modal parameters from output only response 
signals. 
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Eq. (1) constitutes the basis for time-domain modal identification through ambient vibration 



measurements. There are several techniques and algorithms to obtain modal parameters from 
stochastic subspace model, Eq. (2).  
 
The mathematical background for many of such methods is similar, differing only in implementation 
aspects. The algorithms identify the state–space matrices ( [ ]A , [ ]C ) based on the measurements by 
using robust numerical techniques, such as QR factorization, singular value decomposition (SVD), and 
least squares.  
 
Once the mathematical description of the structure is found, modal parameters such as frequency, iω , 
damping ratio, iξ , and operational mode shapes, [ ]φ  are determined from: 
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To validate results the Power Spectrum Density (PSD) method complemented with window correction 
method to obtain damping ratios is used. 
 
 
2. RESULTS OF REMOTE-CONTINUOUS MONITORING 
 
2.1. Ambient vibration, initial modal parameters. 
 
Several ambient vibration tests were performed to obtain the modal parameters of the building. These 
parameters are used as reference (signature) to identify and qualify the variations on the structure 
modal characteristics. 
 
The first four frequencies, corresponding damping ratios and modal shapes are shown in Table 1 and 
2. Acceptable correlations are obtained between the PSD and SSI methods, except for the damping 
ratio. As known, damping ratio is strongly dependent with vibration amplitude and observation 
window type and length.  
 

Table 1. Frequency values obtained by PSD and SSI 
methods using remote SHM network. 

Mode
PSD 
f [Hz] 

SSI 
f [Hz] 

Difference 
(%) 

1 2.23 2.23 0.00 
2 2.63 2.64 0.38 
3 2.99 2.99 0.00 
4 6.33 6.32 0.16 

 
Table 2. Damping Ratio values obtained by PSD and SSI 

methods using remote SHM network. 

Mode PSD 
ξ [%] 

SSI 
ξ [%] 

Difference 
(% of ξ SSI) 

ξ [%] 
range 

1 1.1 0.7 57.1 [0.7 – 1.1] 
2 1.3 0.8 62.5 [0.8 – 1.3] 
3 1.1 0.8 37.5 [0.8 – 1.1] 
4 1.2 1.3 7.7 [1.2 – 1.3] 

 
Modal shapes are also identified with both methods, showing an acceptable correlation using the 
Modal Assurance Criteria (MAC) values, defined as: 
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Where { }iΨ  and { }jΨ  are the compared modal shapes. Fig 6 shows the matrix and values of MAC 

parameter between PSD and SSI modal. 
 

 

 

Mode 1 2 3 4 
1 1.00 0.14 0.12 0.01 
2 0.14 1.00 0.06 0.00 
3 0.12 0.06 1.00 0.00 
4 0.01 0.00 0.00 1.00 

 
Figure 6. MAC parameter between PSD and SSI modal shapes. 

 
 
2.1. SHM web page display. Correlation with soil and ambient parameters. 
 
At present one of the challenge of SHM remote monitoring is to reduce processing time of different 
algorithms to report modal parameters on the Web. Research is focusing on how to organize and 
upload real-time results of modal parameter. The web-site designed for this investigation is in beta-
version, doing continuous improving to the system. For the moment results are stored and published 
each 15 minutes on the Web and it can be access from any computer. The web-site main page shows 
three graphics: the first are the modal parameters showing the frequency and damping variations. The 
second shows soil humidity and the third shows ambient parameters, Fig. 7. 
 

 
 

Figure 7. SHM web-page. www.ingcivil.uchile.cl/shm. Beta-version. 



 
Important results could be obtained from large amount of data. One of the objectives of this type of 
monitoring is to correlate ambient variables (temperature, rainfall, wind speed) with variations on 
modal properties associated to the structure. Current investigation is focusing also to determinate 
relationship between variables, to uncouple the effects on modal frequencies and damping ratios. As 
an example, Fig. 8 shows the effects on the first modal frequency (a) and damping ratio (b) due to 
temperature variations. 
 

(a) 
 

(b) 
 

Figure 8. (a) Temperature effects on frequency variations, mode 1. (b) Temperature effects on damping ratio, 
mode 1. Samples were taken between July 3, 2009 and February 26, 2010. 
 
This kind of analysis is useful to recognize non-linear behavior due to ambient parameters, or to 
conclude that some variables have no influence on dynamic parameters. 
 
 
3. VARIATIOS ON MODAL PARAMETERS DUE CENTRAL-SOUTH CHILE MW = 8.8 
EARTHQUAKE 
 
The Central-South Chile Mw = 8.8 earthquake recorded on February 27th 2010, provided additional 
and important information for this research. The results of remote-continuous health monitoring of 
Torre Central during the earthquake detected the change of modal parameters and correlated with 
damage on structural elements of the building. From Fig. 9 is possible to observe an abrupt drop for 
the frequencies during the earthquake. SHM website reports a decrease of 16.58% (21.08% 1st 
frequency, 16.86% 2nd frequency and 11.82% 3rd frequency) in average for the first 3 frequencies, 
during the earthquake. Later analysis, using ambient vibration, showed a small increase of these 
frequencies, respect to the ones obtained during earthquake, but they did not recovered to values 
before the earthquake. Table 3.1 shows a difference of 12% in average for the frequencies. 
 

 
 

Figure 9. Frequency variation due to Cauquenes Earthquake. Frequencies published on 
www.ingcivil.uchile.cl/~shm. 



 
Table 3.1. Frequency comparison between before and after earthquake using ambient vibration tests. 

Before Earthquake After Earthquake Difference
Frequency [Hz] Frequency [Hz] [%] 
2.22 1.89 15.09 
2.63 2.27 13.64 
2.94 2.70 8.11 
 Average 12.28 

 
The SHM system showed an increased of the critical damping ratio during the earthquake, reaching 
values around 8%. However, post-earthquake, ambient vibration test showed similar values to those 
obtained before the earthquake, which correlates acceptably with the level of damage observed in the 
building, Table 3.2. 
 
Table 3.2. Damping ratio comparison between before and after earthquake using ambient vibration tests. SSI 
method. 

Before Earthquake After Earthquake Difference
Damping Rati0 [%] Damping Rati0 [%] [%] 
0.7 0.7 0.0 
0.8 0.7 12.5 
0.8 0.8 0.0 
 Average 4.2 

 
 
3. CONCLUSIONS 
 
Structural health monitoring has many applications that allow better understand the behavior of 
structures. The combination between technologies and structural diagnosis allow smart structures 
“report” its state continuously and in real time, according to current information needs. Remote-
continuous structural health monitoring system was shown as an important tool of structural diagnosis. 
The fifth largest earthquake of the world showed the effectiveness of the system.  
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