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SUMMARY 
 

In work the results of a study carried out to characterize the mechanical response of a high 
damping rubber to be used to design and construct energy dissipating devices and base isolators 
for controlling strong vibrations in civil engineering structures is presented. A new parametric 
constitutive model of the rubber is proposed to be employed in the design procedure and structural 
analysis of passive controlled structures. The parameters of the model are calibrated using 
experimental results obtained from tests on rubber specimens subjected to different loading paths. 
The new model is able to reproduce the main dissipative mechanisms as well as axial hardening. 
The response predicted for the proposed model is compared with these obtained from 
experimental tests. 

 
 

1. INTRODUCTION 
 
The mechanical characteristics of rubber including its energy dissipating capacity are strongly dependent on the 
components of the mixture used and the fabrication process [Soong and Dargush, 1997; Mata and Boroschek 
2001]. In general, its mechanical behavior is complex presenting an elastic modulus strongly dependent on the 
strain level, temperature and loading frequency. Due to these characteristics, the material shows different types 
of energy dissipating mechanisms, which can go from purely hysteretic, viscous or other [Sommer, 1989; 
Kojima and Yoshihide 1990]. Additionally, when the material undergoes large strains a noticeable hardening 
phenomenon appears in the strain-stress response. It is possible to find numerical models of the problem based 
on the principles of the solid continuous mechanics with appropriate multi–axial constitutive laws for the 
components of the elastomer [Salomon et .al. 1999], but normally they consume a large amount of computer 
time. Other kind of models are based on fitting parametrical equations to experimental data [Kelly 1988], 
providing a phenomenological description of the material, and in many cases, of the control devices. This last 
option presents the advantage of being much more economic in computing time and the calibration of the model 
can be done directly from loading experimental tests.  
 
Frequently, the practical design of structures with rubber based control systems uses equivalent linear models for 
the controlling devices [AASHTO, 1991]. This kind of simplified models can induce significant errors in the 
estimation of the device’s response because the elastic modulus and the damping coefficient are constant values 
for all strain levels and load frequencies [Mata et. al. 2005].  
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This work proposes a new analytical model for rubbers. It is able to simulate the strain hardening for large 
displacements condition as well as variable elastic modulus. The developed model depends on a set of 
parameters, which are determined from experimental tests. The model response subjected to several arbitrary 
loading paths of imposed displacements is compared with experimental data. 
 
 

2. MECHANICAL CHARACTERIZATION 
 

This part of the work presents the test assembly and the results obtained from tests carried out to characterize the 
mechanical properties of a high damping rubber. See Figure 1. The force–displacements response of the rubber 
was obtained for loading paths, which includes sinusoidal cycles with different amplitudes and frequencies and 
sequences of arbitrary imposed displacements. The dependency between dissipated energy and loading 
frequency or maximum strain level was studied. An identification of the main dissipative mechanisms is 
proposed, classifying them in displacement dependent, (hysteretic), and velocity dependent, (viscous). 
 
2.1 Description of the test assembly 
 
Three specimens were tested during the experiments. Each test-piece was composed by five segments, both 
extreme segments and the central one was made of steel with circular perforations for providing fixation to the 
test machine. The other two segments were rubber plates of 9 cm2 of area and 6 mm of thickness. The faces of 
the rubber plates were adhered to the contiguous steel bodies. By this way, fixing the extreme segments and 
forcing a displacement in the intermediate one it is possible to develop different loading paths of imposed 
displacements as it can be seen in Figure 1. The central embolus is connected to the hydraulic actuator of the test 
machine. The sequence of loading tests was the following: 
 

 
 
Figure 1: Test Assembly. 1: Fixed steel segments. 2: Movable steel segment. 3: Position of the movable 
steel segment when a displacement is imposed on the specimen. 4: Fixating bolts. 5: Movable embolus. 6: 
Rubber plate in original configuration. 7: Deformed rubber specimen. 
 
Symmetric cycles. The specimens were subjected to sinusoidal loading cycles of imposed displacements. The 
range of maximum applied amplitudes was defined by following values: +/- 10, 20 50, 100, 150, 170 and 200 %, 
with the following loading frequencies: 1/30, 0,5, 1,0 and 2,0 Hz.  
 
Asymmetric cycles. Sinusoidal cycles of imposed displacement with different maximum and minimum 
amplitudes were applied. The tests were carried out with a loading frequency of 0.5 Hz. See Table 1 for detailed 
values of maximum and minimum amplitudes. The objective is to know the rubber behavior for loading cycles 
displaced from the origin. In Fig. 2a shows samples of the obtained rubber response.  
 
Arbitrary sequences. Finally, two sequences of arbitrary imposed displacements where employed. In Figure 2b it 
is possible to see the records. The first one corresponds to a sequence of ascending and descending ramps. The 
second one is a scaled duplicate of the displacement response obtained from a single degree of freedom system 
with a period of 1 s and 5% of critical damping subjected to the N–S component of El Centro 1945, earthquake 
record. The purpose of using the last record is to study the rubber response for conditions similar to those 
expected during an earthquake. See Figure 2b. 
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Table 1:  Asymmetric loading tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: (a) Examples of the results obtained from asymmetric tests (0.5 Hz). 1: 50–100 % max and min 
strain levels respectively. 2: 100–170 %. 3: 150–200 %. 4: 20–200. (b) 1: Sequence of ramps. 2: Record 
simulating seismic conditions. 3: Rubber response for the sequence of ramps. 4: Rubber response for the 
seismic conditions.     
 
2.2 General behavior of the rubber 
 
The general behavior of the rubber can be described as hysteretic with a nonlinear strain–stress relationship. 
When a test-piece is subjected by first time to sinusoidal cycles, progressive stiffness degradation is noticeable. 
See Figure 3a. The degrading process progress until a stable hysteretic cycle is obtained. Approximately 5 cycles 
are required before the stabilization. Stiffness degradation can be explained as a transient process of 
rearrangement of the particles of the material [Salomon et. al. 1999; Sommer 1989]. One of the main 
characteristics of the rubber is a strongly variable elastic modulus for the strain–stress curve. From the 
symmetric loading tests is possible to identify three different zones:   
 
- An initial zone (1), for strains in the range +/-20 %. This zone is characterized tangent to the strain–stress 

curve higher than in the rest of the strain ranges.  
- A central zone (2), contained in the range +/ - [20–150] %, where the slope tangent decreases. 
- An ending zone (3), for strain levels higher than 150 % where hardening is present, and the slope of the 

tangent to the strain–stress curve is increased again. 
 
2.3 Dissipated energy 
 
The energy dissipated in each loading cycle was calculated as the area of the hysteretic cycle [Chopra, 2000]. 
Figure 4a shows the values obtained for the dissipated energy as function of the maximum strain level for 
symmetric tests and different loading frequencies. Dissipated energy increases with the strain level due to when 
higher displacements are imposed, more energy is dissipated. However, the rate of energy dissipation with the 
strain level is not constant. The slope of the obtained curves is related with the shape of the hysteretic cycles. For 
low strains the cycles has an approximately elliptic shape as it can be appreciated in Figure 3b, but as strain 
grows the hysteretic cycles are stretched along the mayor axis of the ellipse. Finally, for high strain levels (> 150 
%) axial hardening appears in the response.   
 
In Figure 4b it is possible to see the dependency between dissipated energy and loading frequency. Dissipation 
increases with frequency. It could indicate that viscous forces are associated with frequency increments. The 

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Max strain % 
200 200 200 200 200 200 200 200 150 150 150 150 150 150 

Min strain % 
170 150 100 50 20 -20 -50 -100 100 50 20 -20 -50 -100 

Test 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Max strain % 100 100 100 100 100 100 50 50 50 50 50 50 50 100 

Min strain % 
50 20 -20 -50 -100 -150 20 0 -20 -50 -100 -150 -200 50 

1 2 

3 4 

1 

2 

3 4 

(a) (b) 
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results depicted in this figure are normalized, defining the value 1 for the test carried out at 1/33 Hz. This Figure 
also shows that for all maximum strain levels, the bigger the loading frequency the bigger the dissipated energy. 
The dissipation rate is maintained constant for damping values higher than 0.5 Hz. In the first range of 
frequencies (1/33–0.5 Hz) a higher slope of the curve is obtained independently of the strain level. A possible 
explanation for this could be given by the existence of a component of dissipation purely hysteretic. And 
therefore, for cuasi static loadings dissipation only depends on maximum strain level. 
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 3: (a) Degradation of the elastic modulus, after a large number of loading cycles the hysteresis 
became stable. (b) Hysteretic behavior for symmetric loadings. It is possible to appreciate three zones 
according to the average tangent to the strain–stress curve. 
  

 

 

 

 

 

 

 

Figure 4: (a) Dissipated energy (normalized) as function of loading frequency. Each curve corresponds to 
a maximum strain level. (b) Dependency between dissipated energy with maximum strain level. Each 
curve corresponds to a fixed loading frequency.    
 
Additionally, the equivalent viscous damping factor ζ [Chopra, 2000], was calculated for different maximum 
strain levels and loading frequencies according with the Eqs. (1) and (2). 
 

D

so

E1
.

4 E
ζ

π
=                                                                                                                                                                (1) 

2
o

so
kuE .2=                                                                                                                                                              (2) 

 
Where ED is the area of cycle, Eso the elastic energy stored in the cycle, k  is the average stiffness estimated as the 
slope of the backbone of the cycle and uo is the maximum displacement. The values for the factor ζ, for different 
loading frequencies and strain levels are shown in Figure 5. If the displacement grows the damping factor 
decreases, which shows that if the maximum strain is increased; the hysteretic cycle losses  the elliptic shape 
presenting an enlargement along the major axis and a bigger stored elastic energy with a minor ratio ED/Eso.         

 
2.4 Behavior for asymmetric loading  
 
From the results of asymmetric loading tests it is possible to conclude that the loading or unloading paths 
followed by the material are independent on the preview strain history and only are function of the stress–strain 
state existing in when the strain rate changes of sign. It can be evidenced from Figure 6a where it is possible to 
see superimposed all the hysteretic cycles for different minimum strain levels, (blue), and a maximum level of 

(a) (b) 

(a) (b) 
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200 %, (black line). In Figure 6b the maximum strain level is 150 %. Additionally, in Figure 6d the results for a 
maximum strain level of 100 % are depicted. It is possible to conclude that all the hysteretic cycles converge to 
the enveloping curve of the tests carried out at 200 %. In Figure 6c it is possible to see that the curves generated 
by tests with a maximum strain level of 100 % superimpose the curves for tests at 150 % concluding that all 
reloading paths are coincident independently of the maximum strain level reached during the test. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Equivalent viscous camping factor for each maximum strain level. 
 
2.5 Rubber Behavior for arbitrary loading 
 
The response of the tests specimens subjected to arbitrary loadings shows the followings characteristics: 
The sequence of ramps follows the enveloping curve until a strain level of 200 %. After that, several asymmetric 
cycles are developed at different strain levels. All these cycles are attached to the lower branch of the enveloping 
curve, see Figure 7. Energy dissipation is obtained in any case. In the case of the seismic loading for low strain 
levels (<50 %) the rubber response is rather stiff, for medium strain levels (50–150 %) the average shear 
modulus decrease, but the area of the hysteretic cycles is increased. For high strain levels (>150 %) axial 
hardening became noticeable increasing the stiffness.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Cycles for different maximum strain levels. All the branches converge to the enveloping curve. 
  
 
 
 
 
 
 
 
 

 
 
Figure 7: (a) Cycles obtained for the sequence of ramps. Secondary hysteretic cycles are attached to the 
lower enveloping curve. (b) Rubber response for seismic loading. 1: Average stiffness in low strain level. 2: 
medium range. 3: large strain level.     
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3. PROPOSED MODEL 

 
The model proposed for the rubber strain–stress relationship has the following form:  

 

1 2 1( , ,t)= ( ,t)+ ( ,t)= ( )+0.12 .σ ε ε σ ε σ ε σ ε ε& & &                                                                                                             (3) 

 
Where σ is the total stress, ε the strain level, t time, ε&  the strain rate, σ1 the hysteretic component of the stress 
and σ2 is the component depending only on the strain rate. The proposed model uncouples the total stress in 
viscous and hysteretic components. The parameters of the model have to be calibrated from the test results. The 
viscous component σ2 is taken equal to 0.12 ε&  according to [Mata et. al. 2005]. In agreement with the 
experimental part the hysteretic component σ1 should  be able to simulate axial hardening for strain levels over 
150 %, variable shear modulus and the initial slope of a loading or unloading branch should depend only on the 
point when the material goes from loading to unloading or vice versa. The expression for σ1 is given by  
 

11 12

cv cv 1.5
1 2 N L 1 2( , ) ( ( ) )e sgn( )5.0( -1.5 ) .

σ σ

σ φ ε ε σ φ ε φ ε ε= + − +1444442444443 14444244443
                                                                  (4) 

 
where σ11 is the hysteretic part, which is calculated solving the following system of differential equation:  

cv cv cv cv cv cv cv cv
11 y e yk ( , ) ( , ) ( k ( , ) k ( , ))e.σ ε σ ε ε σ ε σ ε σ= + −                                                                        (5) 

c vcv
NLn(x , f )

cv cv
y

e
if e 0           e=(1- )

( , )
else                  e= .

ε ε
ε ε σ

ε

≥ →

→

& &&
&&                                                                                                      (6) 

being Ky is the post yielding stiffness, Ke the pre yielding stiffness, ε the real strain and e represents an internal 
variable of plastic strain which take a value in the range [-εy, εy], (εy is the yielding strain of the material). (xcv,fcv) 
is the point in the strain-stress plane whenε& =0. ‘n’ is the smoothing parameter for transition zone between pre 
and post yielding branches in the hysteretic cycle [Wilson 1998] (see Figure 8).  
The model proposed for the component σ11 solves the system of Eqs. (5) and (6) having into account that the 
parameters Ke, Ky, dy and n, are function of the point where the velocity changes of sign. Therefore, the model is 
updated when there is a change in the sign of the velocity. By other hand, axial hardening is obtained by mean of 
adding an appropriated stiffer backbone to component σ12. Figure 9 presents a graphic of the proposed function.  
  

 

 

 

 

 

 

Figure 8: The upper curve is constructed integrating the model for the initial values of the parameters. 
After the loading–unloading transition has occurred, the parameters of the model are updated.     
 

 

 

 

 

Figure 9: (a) Non linear backbone, σ11, added to the hysteretic component σ22 for including axial 
hardening. (b) Proposed function for σ11 .   
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During the updating procedure it is necessary to know the parameters model expressed as function of the current 
stress and strain level. Therefore, it is necessary to construct the functions φ1, φ2, φ3 and φ4 , Eqs. (4) and (7). 
Explicit forms for the functions φ1, φ2, φ3, y φ4 have to be determined from experimental data. 
 

cv cv cv cv cv cv cv cv
e 1 N L y 2 NL 3 NL 4 NLk ( x , f ) ,  k ( x , f ) ,  d ( x , f ) ,  n ( x , f ).φ φ φ φ= = = =                                           (7) 

 
3.1 Pre yielding stiffness function, Ke=φ1 

 
This function defines the initial stiffness each time when there is a change in the sign of the strain rate. In this 
work an additional simplification will be made supposing that φ1 is function only of εcv. The method for 
determining this function is:  For each hysteretic cycle draw the tangent to the curve where ε& =0. See Figure 10. 
Construct the set of pairs composed by each slope of the tangents and its corresponding strain level . Fit a 
polynomial to the set of the mentioned points. The obtained polynomial is the function φ1 and for the present 
work it is given in Eq. (8), employing for seven points obtained from the tests .    
 
 
 
 
 
 
 

Figure 10: (1, 2, 3): In the circles are highlighted the points where the loading-unloading transition occurs. 
In each of these points the slope of the tangent to the unloading curve is obtained.  
 

2 3 4 5 6 7
1( ) 0.14 0.95 2.45 3.19 2.25 0.89 0.20 0.04 .cv cv cv cv cv cv cv cvx x x x x x x xφ = − + − + − + − +                                                (8) 

 
3.2 Post yielding stiffness function, Ky=φ2  
 
The value of the post yielding stiffness is maintained constant and equal to the value of the slope of the upper 
enveloping curve of the test carried out in a maximum strain level of 200 %, due to the fact that all the loading or 
unloading branches finally converges to the enveloping curve. The function φ2 is defined by Eq. (9).  
 

2 ( , ) 3.30.cv cv yx Fnl Kφ ≈ =                                                                                                                              (9) 

 
3.3 Yielding strain, d=φ3 

 

Having defined the functions φ1 and φ2, the yield displacement function φ3
 is constructed intersecting the line 

with slope φ1 and the enveloping curve with slope φ2. The yield strain is measured from the transition point to the 
intersecting point. This method for calculating the function φ3

 ensures that any loading or unloading branch 
always will be contained inside the main enveloping hysteretic cycle. The expression for φ3

 is given in Eq. (10):  
 

( )
0

3 3
2 1

( , ) ( ) .cv cv
cv cv cv

σ σ σ
φ ε σ φ σ

φ φ
− −

≈ =
−

                                                                                                            (10) 

where σcv is the stress in the transition point, σ0 is a parameter calculated evaluating the line with slope φ2 at zero 
strain level.  
 
3.4 Smoothing function, n=φ4 

 
In this work simulations considering a set of 50 values for φ4  in the range [1 5], where carried out to approximate 
each hysteretic cycle of the symmetric tests. For each simulation one value for the parameter φ4 was chosen 
according to the following criteria: the differences between the predicted value for the stress and the 
experimental value were computed. The square root of the absolute modulus of the sum of these differences was 
chosen as function to be minimized. The parameter φ4, which minimizes this function, is chosen as correct value. 
The minimizing method allows concluding that the best value for φ4 always is 1.0. Therefore, the smoothing 
function is given by: 
 

1 

3 
2 
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4 4( , ) 1.0.cv cvφ ε σ φ≈ =                                                                                                                                 (11) 

 
 

4. COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL RESULTS 
 
4.1 General behavior of the proposed model.   
 
The model was subjected to a sinusoidal record of imposed displacements with variable amplitude in the range 
[0.0-2.0] and loading frequency of 0.5 Hz. See Figure 11a. Additionally, to the value of 0.12 Nsm-1 for the 
damping coefficient, two other fictitious values, (0.05 and 0.30), where employed to compare its influence in the 
response. From Figure 11a it is possible to see that energy dissipation grows as viscous damping coefficient 
increase. The model shows variable shear modulus and it is possible to distinguish the three zones previously 
described. For strain levels over 150 % axia l hardening is present. 
  
A second set of simulations was carried out to evaluate the capacity of the model to dissipate energy for different 
loading frequencies. In Figure 11b are depicted the results for a damping coefficient of 0.12 Kgcm. The same 
input record as in the Fig. 11a was employed, but loading frequencies where 1/33 and 2.00 Hz. In this case it is 
possible to see the hysteretic part of the dissipated energy for a loading frequency of 1/33 [Hz]. On the side a 
zoom view of the low strain zone is  shown. It is possible to appreciate the initial elliptic shape of the hysteretic 
cycles. As the strain level grows the ellipse enlarge along its major axis approximating to a rectangular shape.  
 
 

 

 

 

 

 
 
Figure 11: (a) Hysteretic cycles for three damping coefficients. It is possible to appreciate that the energy 
dissipation grows with the damping coefficient.  (b) Different loading frequencies (1/33, 2.00 Hz).  
  

 
 
 
 
 
 
 
 
 

 
  
 
 
 

 
Figure 14: Comparison between the predicted response and experimental data for symmetric sinusoidal 
tests, 0.5 Hz. Maximum strain levels: 1: 20 %, 2: 50 %, 3: 100 %, 4: 150 %, 5: 170 %, 6: 200 %. A good 
agreement between predicted and experimental data is obtained.  
 

 
 

1 2 3 

5 4 6 

(a) (b) 
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4.2 Comparison between the proposed model and experimental data  
 
The response model was compared with the experimental data for symmetric tests carried out with loading 
frequency of 0.5 Hz. Figure 14 shows superimposed in a same picture the predicted and experimental responses. 
A good agreement is obtained for all strain levels but better fittings are obtained for strain levels over 50 %. The 
results shown in this figure allows to confirm the capacity of the model to reproduce the rubber behavior 
including variable stiffness, axial hardening and the changes in the shape of the hysteretic cycles.        
 
4.3 Comparison between the proposed model and experimental data for arbitrary loading tests 
 
Figure 15 shows the results of simulating the rubber response for the seismic loading case. On the left side it is 
possible to see a good agreement between the hysteretic cycles obtained from numerical simulation and 
experimental data. The model is able to reproduce variable stiffness and axial hardening. The well fitting is 
confirmed on the right side of the figure: the predicted stress time history fits the experimental values with a 
precision of (+/- 5 %).    

 

 

 
 
 
 

Figure 15: Comparison between numerical simulation and experimental data for the seismic loading case. 
Left: Hysteretic cycles. A general good agreement is obtained. Right: Stress time history. Blue: 
experimental record. Green: predicted response.   
 
Finally, it is possible to say that the proposed numerical model is able to reproduce the rubber behavior for an 
arbitrary loading case.  
 
 

5. CONCLUSIONS 
The mechanical characteristic of a rubber candidate to be base material to develop passive control devices was 
studied in this work. A set of tests was carried out on test specimens for knowing the rubber response subjected 
to imposed displacements. The dependency of the response with frequency and strain level was studied. The 
main dissipative mechanisms were identified grouping them in hysteretic and viscous, according if dissipation is 
displacement or velocity dependent. The displacement dependent part of the dissipation was  studied, concluding 
that the response of material does not depend on the previous strain history. Among the more remarkable 
characteristics of the hysteresis are: strongly variable elastic stiffness, axial hardening for strain levels over 150 
% and shape changes in hysteretic cycles with strain level. Additionally, a new model for the rubber behavior 
was proposed, developed and validated. The new model is constructed adding three components: a linear viscous 
dashpot acting in parallel with a stiffener backbone and a nonlinear hysteretic spring. All the parameters for the 
components of the proposed model have to be calibrated from experimental data and the corresponding methods 
are developed in the work. The nonlinear hysteretic spring response is obtained solving a system of differential 
equations describing the relationship between stress and strain. The model is validated comparing the predicted 
response with the data obtained from symmetrical and arbitrary tests. In both cases the proposed model is able 
two reproduce the rubber response with an acceptable precision level.  
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