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In this work the results of a study carried out to characterize the mechanical response of a high damping
rubber to be used to design and construct energy dissipating devices and base isolators for controlling
strong vibrations in civil engineering structures is presented. A new parametric model of the rubber is
proposed to be employed in the design procedure and structural analysis of passive controlled structures.
The parameters of the model are calibrated using experimental results obtained from tests on rubber
specimens subjected to different loading paths. The response predicted by the proposed model is
compared with these obtained from experimental tests.
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1  Introduction

Rubber is one of the most frequently used
materials in the construction of base isolator devices for
controlling vibrations induced by earthquakes.
Additionally, it has been proposes for energy dissipating
devices. The mechanical characteristics of rubber
depend strongly on the composition of the mixture used
in the fabrication of the material. Refs. [1,3,4]. In
general, its mechanical behavior is complex presenting
an elastic modulus strongly dependent on the
deformation level and loading frequency. Additionally,
when the material undergoes large strains and
depending on the boundary conditions, a noticeable
hardening phenomenon appears in the strain-stress
response. It is possible to find numerical models of the
problem based on the principles of the solid continuous
mechanics, but normally they requires a large amount of
computer time and the convergence of the problem is
not ensured.

Other kind of models can be obtained by means of
fitting parametrical equations to the curves obtained
experimentally, Ref. [4], providing a rule for the
description of the material, and in many cases, of the
control devices. This last option presents the advantage
of being much more economic in computing time and it

is possible to calibrate the model directly from loading
tests carried out on the material or control devices.

Frequently, the practical design of structures with
rubber based control systems uses equivalent linear
models for the controlling devices. The use this kind of
models can induce significant errors in the estimation of
the energy dissipated by the devices due to that the
model parameters are constants for all strain levels and
loading frequency, Ref. [4].

This work propose a new analytical model for
rubbers. The parameters of the model are determined
from experimental tests. Finally, the response of the new
model is compared with experimental data.

2  Mechanical characterization

This part of the work presents the test assembly
and the results obtained from tests carried out to
characterize the mechanical properties of a high
damping rubber. The force–displacements response of
the rubber was obtained for different loading paths
which include sinusoidal cycles of imposed
displacements with different amplitudes and frequencies
and sequences of arbitrary imposed displacements. The
dependency between dissipated energy and loading
frequency or maximum strain level was studied.

Proceedings of the
Third European Conference on Structural Control, 3ECSC,
12-15 July 2004, Vienna University of Technology, Vienna, Austria
Austria



2.1  Description of the experimental assembly and
test program

Three specimens were constructed, each of them
was composed by five segments, the both extreme
segments and the central one was made of steel with
circular perforations for providing the fixation to the test
machine. The other two segments were constituted by
rubber plates of 9 cm2 of area and 6 mm of thickness.
The faces of the rubber plates were adhered to the
contiguous steel bodies. By this way, fixing the both
extremes and forcing a displacement in the intermediate
one it is possible to develop different loading paths of
imposed displacements, Fig. 1. The sequence of loading
tests was the following:

Figure 1: Specimen description. 1: Fixed steel
segments. 2: Movable steel segment. 3: Position of the
movable segment when a displacement is imposed on
the specimen. 4: Fixating bolts. 5: Movable embolus. 6:
Rubber plate in original configuration. 7: Deformed
rubber specimen.

Symmetric sinusoidal cycles. The specimens were
subjected to sinusoidal loading cycles of imposed
displacements. The range of maximum applied
amplitudes was defined by following values: +/- 10, 20
50, 100, 150, 170 and 200 %, carrying out each test with
the following loading frequencies: 1/30, 0,5, 1,0 and 2,0
Hz.

Asymmetric sinusoidal cycles. Sinusoidal cycles of
imposed displacement with different maximum and
minimum amplitudes were applied. The test were
carried out with a loading frequency of 0,5 Hz. See
Table 1 for detailed values of maximum and minimum
amplitudes. By means of this set of tests it has tried to
characterize the hysteretic behavior of the rubber for
loading cycles which are displaced from the origin.

Table 1: Asymmetric loading tests.

Test
1 2 3 4 5 6 7 8 9 10 11 12

max
% 200 200 200 200 200 200 200 200 150 150 150 150
Min
% 170 150 100 50 20 -20 -50 -100 100 50 20 -20

Test
15 16 17 18 19 20 21 22 23 24 25 26

max
% 100 100 100 100 100 100 50 50 50 50 50 50
Min
% 50 20 -20 -50 -100 -150 20 0 -20 -50 -100 -150

Arbitrary imposed displacements. Finally the
specimens were subjected to sequences of arbitrary
imposed displacements. The first one corresponds to a
sequence of ascending and descending ramps. The
second one is a scaled duplicate of the component N–S
of the El Centro earthquake 1940.

2.2 General behavior of the rubber

The general behavior of the rubber shows a
nonlinear strain–stress relationship with energy
dissipation. When a test specimen is subjected by first
time to sinusoidal cycles, a progressive stiffness
degradation is noticeable. The degrading process
progress until a stable hysteretic cycle is obtained. This
progressive lack of stiffness could be explained as a
transient process of rearrangement of the particles
which composes the material. Ref. [5].

One of the main characteristics of the rubber is a
strongly variable elastic modulus. From the symmetric
loading tests is possible to identify three different zones:

An initial zone, for strains in the range +/-20 %.
This zone is characterized by higher slope of the line
tangent to the strain–stress curve than in the rest of the
strain ranges. A central zone (2), contained in the range
+/- [20–150] %, where the slope of the mentioned
tangent line decrease. An ending zone (3), for strain
levels higher than 150 % where hardening is present.

2.3  Dissipated energy.

In this work the dissipated energy was calculated
estimating the area of the hysteretic cycle Ref. [2,4].

2.3.1 Dependency between the dissipated energy and
the strain level.

 The Fig. 2 on the right side shows the obtained
values for the dissipated energy as function of the
maximum strain level for different loading frequencies.
The dissipated energy increases with the maximum
strain level. However, the rate of energy dissipation is
not constant due to that for low strain levels the cycles
has an approximately elliptic shape, but as the strains
grows the hysteretic cycles are stretched along the
mayor axis of the ellipse.

Figure 2: Left: Dependency between dissipated
energy and loading frequency. Right: Dependency
between dissipated energy and maximum strain level for
each loading frequency.

2.3.2 Dependency between dissipated energy and
loading frequency

In the Fig. 2 on the left side it is possible to see the
dependency between dissipated energy and loading
frequency. Dissipation increase with frequency
indicating that viscous forces are present. The results
depicted in this figure are normalized for the test carried



out at 1/33 Hz. The rate of dissipation is maintained
constant for damping values higher than 0.5 Hz. In the
first range of frequencies, (1/33–0.5 Hz), a higher slope
of the curve is obtained independently of the strain
level. A possible explanation for this could be given by
the existence of one hysteretic component of the
dissipation which is present in all tests.

2.4  Behavior for asymmetric and arbitrary loading

From the results of asymmetric loading tests it is
possible to conclude that the loading or unloading paths
followed by the material are independent on the preview
strain history and only are function of the stress–strain
state existing in the moment when the strain ratio is
zero.

The response specimens subjected to seismic
loadings shows the followings characteristics: in low
strain levels (<30%) the rubber presents the most rigid
response, for medium strain levels (50–150%) the
average elastic modulus decrease respect to the low
strain levels, but the area of the hysteretic cycles is
increased. For high strain levels (>150%) hardening
became noticeable, contributing to increase the stiffness.

3  Proposed model

The proposed model for the rubber strain–stress
relationship has the following form:

1 2 1F(x,x,t)=f (x,t)+f (x,t)=f(x,t)+cx.& & & (1)

Where F(x,v,t) is the total stress, x are the strain
levels, t time, x&  the strain rate, f1 the hysteretic
component of the stress,f2 is the viscous component and
c is the equivalent viscous damping coefficient. Ref. [4].

 F is a phenomenological description for  the
stress state in the material when is subjected to imposed
displacement. The viscous component f2 is taken equal
to 0.12 x& , according to Ref. [4]. The expression for f1 is
given by Eq. (2).
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Where f11 is the hysteretic nonlinear stress which
is calculated solving the following system of differential
equation (adapted from Computers and Structures for its
software SAP200):
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Being Ke(x
cv,fcv) and Ky(xcv,fcv) the pre and post

yielding stiffness, d(xcv,fcv)  the real strain of the system
and e represents an internal variable of plastic strain
which take a value in the range [-dy,  dy], (dy is the
yielding strain level). (xcv,fcv) is the point in the strain-
stress plane when x& =0. ‘n’ is the smoothing parameter
for the zone between pre and post yielding branches in
the hysteretic cycle. Fig. 3. The parameters Ke, Ky, dy

and n, are function of the point where the strain rate is
zero.

The hardening is obtained by mean of adding an
appropriated stiffer backbone to component f11. For the
present case the hardening function is the component f22

of Eq. (2).

Figure 3: The upper curve is defined integrating
the model for the initial parameters. When

0x =& parameters of the model are updated.

During the updating procedure it is necessary to
have the model parameters expressed as function of the
current stress and strain level. Therefore, it is necessary
to estimate the functions φ1, φ2, φ3 and φ4 , Eqs. (2)
from experimental data.

3.1  Function φφ 1,φφ2,φφ3 and φφ 4

In this work an additional simplification will be
made to construct the pre yielding stiffness function φ1,
supposing that only is function of xcv. A method for
determining this function follows:

For each hysteretic cycle draw the tangent line to
the point of the curve where x& =0. Construct the set of
pairs composed by each slope of the tangent line and its
corresponding strain level . Fit a polynomial to the set of
the mentioned points. The obtained polynomial is the
function φ1. The expression for φ1 is given in the Eq.
(5).
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The post yielding stiffness φ2 is maintained constant and
equal to the value of the slope of the upper enveloping
curve Eq. (6).

2 ( , ) 3.30.cv cv yx Fnl Kφ ≈ = (6)

The yield displacement function φ3
 is constructed

intersecting the line with slope φ1 and the enveloping



curve with slope φ2. The yield strain is measured from
the zero strain level to the intersecting point. Eq. (7):
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where Fnlcv is the point where the strain rate is zero and
Fnl0 is calculated evaluating the straight line with slope
φ2 at zero strain level.

After an optimization procedure the value of one
was found for the smoothing function φ4. Eq. (8).

4 4( , ) 1.0.cv cvx Fnlφ φ≈ = (8)

4  Comparison  between numerical and experimental
parts

The calibrated model was subjected to a sinusoidal
record of imposed displacements with amplitude in the
range [0.0-2.0] and loading frequency of 0.5 Hz. Fig. 4.
Additionally, to the value of 0.12 Kg/s for the damping
coefficient, two other fictitious values, (0.00 and 0.30),
where employed to compare its influence in the
response. From Fig. 4. it is possible to see that energy
dissipation increase as viscous damping coefficient
increase. The model is able to simulate energy
dissipation for cuasi static loading, variable stiffness,
and hardening for strain levels over 150%.

Figure 4: Upper: Imposed displacements record.
Lower: Hysteretic cycles obtained for three values of
damping coefficient.

The response model was compared with the
experimental data for symmetric tests carried out with
loading frequency of 0.5 Hz. Fig. 5. A good agreement
is obtained for all strain levels but better fittings are
obtained for strain levels over 50 %.

Figure 5: Predicted response and experimental
data for symmetric sinusoidal tests, 0.5 Hz. Maximum
strain levels: 1: 20 %, 2: 100 %, 3: 200 %.

Fig. 6 shows the rubber response for the seismic
loading case. A good agreement between the predicted
stress time history and the experimental data is
obtained. (error: +/- 5 %).

Figure 6: Stress time history. Comparison
between numerical simulation and experimental data.

5  Conclusions

The mechanical characteristic of a high damping
rubber was studied in this work. Sets of tests were
carried out for knowing the rubber response subjected to
imposed displacements. The dependency of the
response with frequency and strain level was studied.
Among the more remarkable characteristics of the
hysteresis are: strongly variable elastic stiffness and
axial hardening for strain levels over 150 %.
Additionally, a new model for the rubber behavior was
proposed. The new model is constructed adding three
components: a linear viscous dashpot acting in parallel
with a stiffener backbone and a nonlinear hysteretic
spring. All the parameters for the components of the
proposed model have to be calibrated from experimental
data. The model is validated comparing the predicted
response with the data obtained from symmetrical and
arbitrary tests.
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