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l ABSTRACT

Geometric nonlinearities have been seen to have an important inf1 uence on the

inelastic response of many struc rures subjected to earthquake motions, Design procedures

to account for these so-cal led p-tJ. effects are relatively simple. relying in the case of build­

ing structures on a combination of drift lirnits , proprotioning requirernents and strength

enhancernents. Currently, the Bridge Design Specification Manual (Caltrans, 1990)

does not require co nsideration of p-tJ. effects. None the less, Caltrans has adopted special

design req uirernen ts for several reeent project s in which geornetrie nonlinearities are

explicitly considered. Little information is available regard ing the reliabili ty of such design

eri teria in general and the spec ial circumstances that rnay occur for bridge struc tures in

part icular. This background report is intend ed to sumrnarize sorne of the bases and

lirnitations of methods for treati ng P-tJ. effeets in seis mie desig noto provide insight into the

ine las tic seismic behavi or of simple brid ge struc tures aeti ng und er the inf1uence of

geometric nonli neari ties, and to assess in a preliminary sense design criteria, incl uding

recently proposed Caltrans proced ures, that can be used to compensate for P-tJ. effects.

The first three sec tions of this repon introduce various definit ions, co ncepts and

concern s related to geometric nonlinearities that may beof particular interest to readers who

are not familiar with the literature on this topic. Following a brief introduction . the second

sec tion summarizes reeent analyticalliterature related to the effee t of geometric non lineari ­

ties on thc inelastic seismic response of structures , The third section revi ews lite rat ure re­

lated to design considering geometric nonlinearities and the various practices stipula ted in

desig n codes for considering P-tJ. effeets.

The fourth sec tion presents the results of a new set of non linear dynam ic analyses

whic h suggest ranges of design variab les where proposed Caltrans and other design proce­

dures may be used conservat ívely, and others where they produce highly unconservative

results. The effeet of varying (a) struc tural properti es such as periodolateral streng th, and

restor ing force characteris tics, (b) intensities of geometric non línearitíes, and (e) the

ground rnotion intensi ty, frequency conten t and duration are considered explicítly in the

preliminary analyses presented , A statistical evaluation of the num erical resul ts suggests

that re liable empirical rela tions can be deve loped for use in desig no The fift h section sug­

gests an alternative design approach based on the analytical results. The las t section sum ­

marizes the present study and suggests arcas for further research.
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INTRODUCTION

The Bridge Design Specifications Manual (Caltrans (1990)) does not require
consideration of geometric nonlinearities. These so-called "P-tl. effects'' have been

neglected on the basis of several observations. First, earthquake damage to reinforced

concrete bridges is generally attributed to non-ductile details, insufficient shear

reinforcement in members and joints, and inadequate anchorages. For such brittle modes

of failure, geometric nonlinearities contribute little. Second, computed design displace­
ments are generally small. In such cases, P-tl. effects are assumed inconsequential as long

as they do not jeopardize static stability. Thirdly, building code provisions in the U.S.
have until recentlyalso ignored P-tl. effects.

The ductiledetailing requirements currently prescribed by Caltrans will avoid most

prernature modes of failure. However, flexible bridge structures or bridges constructed in
severe seismic settings may now be able to develop displacements large enough for P-tl.

effects to become irnponant, In recognition of this, Caltrans has begun to account for P-tl.

effects explicitly in the design of several structures in the San Francisco bay area.

For example, for the San Francisco area double deck viaducts computed lateral

displacements must not exceed 1% of lhe height of lhestructure when static lateralloads are

applied resulting in a base shear equal to 25% of the weightof the structure. For a dynamic

response spectrum analysis, displacements computed setting the Z (ductility and

irnportance) reduction factor to unity should not exceed one-sixth the dimension of the

structure's columns in the direction under consideration. To estimate displacements

realistically, cracked section properties are used in analysis. These special design

provisions were based on recommendations of the Peer Review Panel established for the

San Francisco area viaducts.

A more detailed and technically based procedure for considering P-tl. effects was

developed by Caltrans for the design of the new Terminal Separator structure in San

Francisco. For this structure, lhe design moments in the columns are amplified to account
for P-tl. forces acting on the structure, Thus, the incremental design momento M,.,. used

for this structure to compensate for P-tl. effects is given by:

(1)



in which P is the axial load acting on a column;

um is the maximum lateral displacement developed by the column;

116 is the displacement ductility factor (= um/Ay);

Ay is the lateral displacement at first yield; and

eis a factor to reduce the severity of the P-A effect,

These moments are added to conventional design moments obtained ignoring geometric

nonlinearities. For most values of e. the lateral dis placement at which the P-A effect is

evaluated using Eq. l does not correspond to the full design ductility factor. With eequa!

to 2. for exarnple, Eq. 1 results in roughly the same energy being absorbed by elasto­

plastic systems with and wilhout P-A effects for static loading applied in one direction (for

clarification see Fig. l and later discussions on this matter). At a maximum ductility of 4.

the displacement at a duct ility of only (1 + 4)/2 = 2.5 would be used for design to compute

P-A effects.

STRENGTHENEDSTRUCTURE

No P-A Effectsl
P-A Effects

~~~:r--- - -----My+Mt.

My

c~

E ¡¡¡
:l E

"O o 'o P-A EffectsU ¿
L..---P_A Effects
5HADED AREA5
APPROX~ATELYEQUAL

1 2 3

Ductility

4

Fig . l lncrease in Strength to Compensate for P-A Effects; Shown for e= 2 in Eq. l .
Resulting in Approximately Equal Energy Absorption for Structures

with and with out P-t. effects (after Pauley, 1978)
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The actual P-Li moment , M P-A' al the maximum displacemenl of the sys tern is

given by:

(2)

For Eqs. l and 2 lO be equal , e rnust be (¡.¡ + i) /¡.¡; or for ¡.¡ equal to 4, e rnust be 1.25.

Because of the sensitivity of lhe inelastic dynamic response of structures to P-Li effects, e
in Eq. l was taken for the design of the Terminal Separator lO be 1.5, rather than 2. For a

maximum displacement ductility factor of 4, this corresponds to a design displacement for

computing P-Li effects equal to 3.33 limes the yield displacement.

Unfortunately, little quantitative information is available regarding the reliability of

such design criteria. This brief repon summarizes sorne of the bases and lirnitations of Eq.

1, and provides sorne results of nonlinear dynamic analyses lOhelp assess its viability for

design purposes.

The next section of this repon introduces various definitions and concepts related lo

P-Lieffects and surnmarizes recent analytical Iiterature. The third section reviews literature

related to design considering geometric nonlinearities and practices stipul ated in design

codes for considering P-Li effects. The informed reader may wish 10 skip these two

sections. The fourth secti on presents the results of a new set of nonlinear dynamic

analyses which suggest ranges of design variab les where Eq. l may be used

conservatively, and others where it produces unconservative resul ts. The fifth section

suggests an altemative design approach based on the analytical results which may be used

in cases where Eq. l is unconservative. The last section summarizes the present study and

suggests areas for further research.
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RESPONSE OF STRUCTURES INCLUDING P-L1 EFFECTS

Surprisingly little information is available in the literature related lO the effects of

geometric nonlinearities on inelastic seismic response. Many studies have been directed al

refining the anaIytical or numericaI formulations that can be used lO account for geometric

nonlinearities. For example, Eq. 2 is based on small deflection theory, and several studies

have analytically investigated lhe ímportance of higher order terms. In other analytical

studies, the effect of geometric nonlinearity on the distribution of internal forces aIong a

member have been examined. For design purposes such refinernents are generaIly not

warranted, since large displacements near incipient member buckling are to be avoided.

Many studies of inelastic seismic response have incorporated P-t. effects since the

computer programs utilized automatically permit their consideration. However, few studies

have atternpted ro understand the sensitivity of inelastic response to geometric

nonlinearities, or to identify characteristics of the structure or ground motion that control

this sensitivity. One of lhe main reasons for this situation is that the inelastic dynamic

response of a structure with negative posl-yield tangent stiffness, as may occur when P-lí

effects become dominanl, is highly unstable. This recognition has led most researchers 10

recommend that structures be designed so that P-lí effects do not become irnportant; í.e.,

they possess sufficienl stiffness lo limit lateral displacements.

When P-lí effects are lo be considered a simple geornetric model is usually

employed in the analysis. Such a model is shown in Fig. 2.

t.

L

Pin

MODEL

...'

PML

P-OFORCE5

Fig. 2 Simplified Model of P-lí Effects
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In the absence of any structural resistance, a lateral load equal to PLVL must be

applied to oppose the displacement of the structure. This force is linear with respect to

lateral displacement. However, the lateral stiffness associated with this systern is negatíve,

since the restoring force must be applied in a direction opposing the observed displace­

ment. This geometric stiffness can be employed for any single degree of freedom systern,

regardless of its mechanical characteristics.

For simplicity, the mechanical characteristics of a ductile structure are often

assumed, in the absence of geometric nonlinearities. to be elasto-perfectly plastic (see Fig.
3). Once such a structure displaces laterally in the presence ofaxial loads, P-J. induced

forces (Fig. 2) will reduce the strength of the structure remaining to resist extemally applied

loads. Geometric nonlinearities will also reduce the apparent lateral stiffness of the

structure in the elastic range, and may result in a negative post-yield tangent stiffness, as

shown in Fig. 3. It should be noted that the yield displacement of the structure does not

change because of the geometric nonlinearities.

--------L Displacement, J.!J -----....
P-J.Effect -P/L~ _

----...

Ry

R'y

Load,R

K-P/L
I
I

! J.y

Behavior Ignoring P-J. Effects

-P/ L r:-::;;;.:=:""""'oI~........

Behavior With p-J
Effects Included

Fig. 3 Schematic Effect of Geometric Nonlinearities
on Mechanical Characteristics of Structure

The actual post-yield tangcnt stiffness (and strength) of a structure will depcnd on

its mechanical characteristics in the absence of geometric nonlinearities. Highly redundant

systems, like building trames. often exhibit considerable deformation hardening (positive

post-yield tangent stiffnesses) as a result of the redistribution of forces that occurs during
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the progressive development of plastic hinges needed to form a collapse mechan ism. The

literature related to build ing frames often cites ultimate strengths 300 to 500% greater than

the specified design yield strength. Such high amounts of deformation hardening are not

likely to develop in simple bridge structures (i.e., the ratio of plastic to ultimate (nominal)

moments considered for design ranges from 1.3 to I .S). In any event, the mechanical

ch aracteristics of most structures can be represented for discussion purposes by an

"effectíve" elasto-perfectJy plastic curve.

The idealization of geometric nonlinearities must become slightJy more complex for

multilevel structures , Limiting the current discussion to simple single level brid ge

structures, the model described wiJI suffice.

Several studies (e.g. , Newmark (1971 ), Mahin and Bertero (1981 ), Bertero

(19 76), MacRae (199 1)) have investigated the inñuence of the rate of deformation

hardening on inelastic response. Generally, it has been found that small positive post-yield

tangent stiffnesses redu ce maximum displacements slightly and residual displ acements

substantially. On the olher hand, even very small negative values for the post-yield tangent

stiffness results in large increases in both maximum and residual displacements. Four

intuitive reasons for this adverse behavior when negative post-yield tangent stiffness occurs

can be advan ced.

First , co nsidering the incremental equations of motion for an undamped single

degree of freedom system at time increment 'i':

in which

móai + óRi =-móag¡

m is the mass of the system;

óRi is the change in nonlinear restoring force during the time step in

question;

LUi is the change in relative acceleration of the mass; and

ó agi is the change in lhe acceleration of the ground.

(3)

Recognizing that the total acceleration óat¡ of the mass is the sum of ó ai and óagi, Eq. 3

can be rewritt en as:

móati + ó Ri =O (4)
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or

Llali = - LlRi/m (5)

Thus, for a simple yielding systern that is elasto-perfectly plastic, the term LlRi is zero and

the change in acceleration of the systern rnust also be zero. As a result, the systern would

maintain the same acceleration and displacements would increase quadratically. For a

systern with a positive post-yield tangent stiffness, the term LlRi is positive resulting,

according lo Eq. 5, in reductions in acceleration during each step the structure yields.

Since the accelerations reduce, the displacements would be expected to reduce accordingly.

For a systern with a negative post-yield tangent stíffness, the term LlRi is negative

and the structure's acceleration would increase during each step . Since the accelerations

increase , the displacements would increase as well. Thus, a descending post-yield stiffness

will ínherently tend to increase the displacements of a structure. Because of the quadratic

relation between accelerations and displacements, these increases in acceleration are

expected to have a disproportionate effect on displacements.

The second reason for increased response of a system with negative post-yield

tangent stíffness is that the structure's strength is no longer the same in each direction of

motion. Modifying Fig . 3 for the case of cyclic ela sto-perfectly plastic mechanical

behavior, one obtains the plot shown in Fig. 4. For exarnple, consider the loading path

that takes the structure to point A in Fig. 4. If the structure unloads al this point , it rnust

attain the force corresponding to point e for yielding lO commence in the oppos ite

direction. It should be noticed that the yielding resistance of the structure for loads toward

the origin has been increased by the P-Ll effects . If, on the other hand, loading conlinues

from point A toward point B, the effective yielding resistance has been reduced by the P-Ll

effect. Thu s, the structure is weaker for motion away from the origin, and stronger for

motions that would return it toward its initial position. The same characteristics occur if the

structure initially move to the left in Fig. 4, rather than to the right. Once yielding occurs in

one direction , subsequent yielding of the structure will tend to be in that same direction

because of the geometric nonlinearities.

Newm ark (1971), among others, has studied the ductility demands on a structure

that is weaker in one direction than in the olher. He observed that demands will tend lo be

greater for these unsymmetrical systerns than for otherwise similar symmetric structures

having the weaker strength in both directions . This is true even for systems without
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geometric nonlinearities, i.e., systems with no deformation softening. Intuitively, this

increase in ductility demand may be explained by the observation that when the structure

deforms elastically toward the stronger side it can store far greater elastic strain energy lhan

if it yielded at a lower load. Thus , it can rebound toward the weaker side with far greater

energy, producing potentially greater ductility demands. As a result, once a structure

subject to P-l!. effects displaces away from its origin , incremental ductility demands for

individual acceleration pulses within an earthquake record will tend to be greater in the

weaker direction (heading away from the origin ), than they would be toward the stronger

direction (retuming the structure to the origin).

A

BEHA VIOR IGNORING
P-d EFFECTS

C

B

DISPLACEMENT, l!.

- - ...... ------

LOAD,R
, ,_.

A '

--..,,----

C'

B'

-"__~~ ..L .. .:'-~. "

.-.....~::L

BEHAVIOR INCLUDING

P-d EFFECT5

- "-.

FIG.4 Effect of Geometric Nonlinearities under Cyclic Loading

A fourth reason one might advance to explain the potentially increased displace­

ments for systems with geometric nonlinearities is that P-l!. effects increase the period of a

structure (since the effective elastic stiffness is reduced). Elastic spectral displacements

would lhen be expected to increase resulting in larger displacements for structures subject

to P-l!. effects.

In much of the design oriented literature one fínds mention of the displacements lhat

may occur during inelastic response. For long period structures (relative to the predominant

peri od of the ground supp orting the structure) it has been established (e.g., Newmark

(l 97\) and Mahin (1981)) that a good estimate of maximum displacements can be made

from the elastic spectral displacements corresponding to the init ial elastic period of the
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structure and a value of damping corresponding 10 the elastic range of response. Newmark

showed thatthe shape of the hysteretic loops has only a marginal effect on the maximum

inelastic displacements so long as the envelop curves are symmetric and stable (no

reduction of strength occurs at points of maximum displacement as a result of cycling).

For exarnple, it has been well established by Newmark (1971 ), Mahin (1981 ) and olhers

that the average maximum displacement experienced by stiffness degrading systems

(represe nting reinforced concrete structures) is virtually indistinguishable from those of

bilinear hysteretic systerns (representing steel structures).

This observation has led many to assume that P-Ó effects have Iittle influen ce on the

overall energy dissipation capacity of structures with geometric nonlinearities. Thu s,

Pauley (1978) suggests that the energy dissipated during displacement cycles with equal

amplitudes in each dire ction is unaffected by geometric nonl inearities. Th is is shown

conceptually in Fig. 5 where the shaded area for the system including P-Ó effects equals

that of the system with out geometric nonlin earities. Thi s equ ality of energy dissipation

capabiliti es has led sorne to assume that the maximum displacements of structures with and

without P-Ó effects should be about the same.

-C-- With P-ó Effects

Load,R

EQUALAREAS

Fig. 5 Equal Energy Dissipation for Cycles with Equal Displacement Amplitudes

However , as indicated aboye one would not expectthe maximum displacements 10

be the sa me in both directions of rnotion. Newm ark (197 1) also stipulatcs that for his

observations to be valid the post-yield tangent stiffness must not be negative (and that

ductil ity dem and s and dampi ng values should not be large). Sirnilarl y, Wakabayashi
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(1986 ) indicates that equal energy or displacement assumptions cannot be used

conservatively to predict maximum inelastic displacements from elastically cornputed

displacements when the post-yield tangent stiffness is negative, as happens when

geometric nonlinearities dominate .

The typical displacement history for systems with significant P-A effects is biased

in one direction. Clearly, structural displacement histories will be sensitive to the sequence

and intensity of individual acceleration pulses in the earthquake record . However, typic al

hysteretic loops show ever increasing amounts of perrnanent offset during the response,

leading LO what is called an "incremental," "crawling" or "ratcheting " type failure mode

{Bertero (1976)). This offsetting behavior is illustrated in Fig. 6. Displ acem ents in such

cases are substantially larger than predicted elastically (or inelastically using elasto-perfectly

plastic hysteretic characteristics). This is true even where the tangent stiffness is small. For

example, Mahin (1976) found that displacements can doubl e or triple (or even result in

static collapse of the stru cture) for negative slopes as small as 1% of the initial ela stic

stiffness. This was especially true for system s with ductility demands (ign oring P-A

effe cts) greater than 4 to 6. For smaller ductility dernands, smaller increases would be

expected due LO the less severity and fewer number of yield excursions.

Load,R

P-Ó~~~~7--r~rT7'"'-l--'--'-¡-~r--__
--- ....

Dísp., A

-"-"­ " - .

._ . . ....
"- ..- . . ....

Fig. 6 Bias in Displacement History Leading to Incremental Collapse Mude

It has been noted by MacR ae (1991), Ziegler (1980), Mahin and Berte ro (1981) and

others that the residual deformati ons uf inelastic structures diminish rapidly with even small

positive pust-yield tangent stiffnesses, but increase dramatically for negative values. For

10
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elasto-perfectly plastic systems the residual displacement ranges roughly from 40 to 60 '70

of the maximum inelastic displacement of the structure. (Stiffness degrading systems

perform better with residual displacements typically less than 30 % of the maximum

displacement achieved.) For systems with small P-~ effects, residual ductilities range from

90 LO 100% of the maximum ductility developed (MacRae (1991)). This would have an

important irnpact on operability and repairability following a design earthquake. Moreover,
the P-/l induced forces associated with the permanent displacements may reduce the

strength of the structure lO the point where it cannot satisfactorily resist aftershocks or other

future earthquakes.

Because of the directional bias observed in systems subjected to P-~ effects, one

would expect that a main parameter influencing maximum displacement is the duration of

shaking. This has been noted by many investigators [e.g., Bertero (1976), Jenning s

(1968), Mahin (1976), Newmark (1975), Sun et al. (1973), Takizawa (1980),

Wakabayashi (1986)]. These studies show that all elasto-per fectly plastic syste rns

subjected to P-/l effects are inherently unstable and that, given a sufficiently long

earthquake, will collapse.

Husid (1967 and 1968) and Jennings (1968) considered systerns with elasto­

perfectly plastic hysteretic restoring force characteristics, 2% viscous damping, and initial

periods ranging between 0.5 and 2.0 secs. A variety of real and artificial ground motions

was considered. Based on these analyses it was found that the expected time to collapse,
E(lc), could be approximated by an expression of the form:

in which

E (IC) = e L[RyI (BP)]2

B is a measure of eanhquake intensíty related lO root mean squared

acceleration divided by g;

e is an empirical coefficient;

Pis the weight of the system supported on the column:

Lis the height of the structure; and

Ry is the initial yield capacítyof the structure ignoring P-/l effects,

(6)

Newmark (1971) discusses the reasons for the form of this expression. He stipulates that

such expressions are valid only when the applied axial loads in the structure are far less

than the structure's static lateral buckling load. It can be noticed from Eq. 6 that the
expected time LO collapse is proportional to RylBP. Here, RylP represents the base shear
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coefficienl for the structure al the onset of yielding. As such, P-d effects would be

expected lObe less severe for stronger systerns (relative lOthe strenglh of the ear thquake),

These would have lower Z values (lower design ductility demands). The time to collapse is

also inversely proporti on al 10 PIL, the slope of the post- yield tangent stiffness .

Co nseq uently, the smaller the P-d effect (PIL), the longer it will take the structu re lO

collapse. For design one would thus try lOminimize PIL.

Mahin (1976) exarnined the effec t of aftershocks on the inelastic deformation

demands of sys tems subject 10 geometric nonlinearities. This study showe d that ductility

demands more than doubled during the aftershock sequences considered.

Significantly, lhe time lOcollapse in Eq. 6 is not a function of period oNewmark

(197 1) showed that for periods near and below the limits considered in Husid and

Jenn ings' study (0.5 sec.) inelas tic displacements exceed elastic ones. One would assume

that P-d effects would be more severe for these shorter peri od struc tures as a resul t.

Ziegler and Mahin (1980) examined a broader range of elastic periods for elasto-perfectly

plastic systerns and, like Jennings (1968), found that ductility demand s increased for large

values of PIL, large durations of shaking and lower strengths (relative to the intensity of

the ground motion). By considering shoner period structures, they also found that ductility

demands increased with decreasing periodo

Ziegler (1980) also studi ed the effects of different hysteretic models on time 10

collapse. In these studies simple stiffness degrading models were used, representative of

reinforced co ncrete. This study suggested that P-d effects were far less importan! for

stiffness degrading syste rns than for elas to-perfectly plastic ones. However, these studies

were limite d to cases where the reduction of apparent structural strength, because of P-d

effects, would be less than 8% of the initial yield capac íty at a ductility of 4. In addition,

the hysteret ic model utilized in these studies did not properly capture the effect of geometric

nonlinearities on the elastic range of response at large displacements.

The reaso n stiffness degrading systerns are believed 10 be less sensitive to P-d

effects is that motio n lO return the structure to the origin is not resisted by the full elastic

stiffness and amplified strength of the structure, but by a greatly reduced stiffness (see Fig

7). Thus, it is far less difficult for the system to return 10 the origin along path A-B in Fig.

7, than if the sys tern were elasto-plastic. The validity of these observations for more

severe geo metric nonlinearities remains to be assessed. Under these conditions, the systern
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will still have a significant elastic range (stiffness and pseudo-stren gth ) in the reversed

direction (near point A) due to the 'tilting' of the loops.

Load, R

--f p-~ Effect

--- e-----

B

Fig. 7 Stiffness Degrading System with p-~ Effect Included

Takizawa and Jennings (1980) also investigated the co llapse characteristics of

reinforced concrete frames (represented by a single degree of freedom system with stiffness

degrading hysteretic characteristics). The focus of their study was to assess the effect of

ground motion characteristics on collapse potential. They showed that peak acceleration

was not sufficient to characterize the severíty of response and that duration of shaking had a

very significant influence for these systems. In particular. they found that short duration

motions, in spite of very high acceleration intensi ties, exhibit little damage potenti al.

Another important finding from this study was that the period of the structure had very

limited influence on the ultimate inelastic response of the structures, but that yield strength

and the severity of the geometric nonlinearity (magnitude of -PIL) were dominant factors.

They also noted that stiffer structures have a larger margin of safety against collapse than

do more flexible ones.

Sorne additional insight into the effect of the shape of the hysteresis loop on

ductility demands was provided recently by MacRae et al. (199 1). They show that sorne

types of systems will collapse through excessive lateral displacernents , if the duration of the

ground motion is long enough. These systerns are termed "unstable." Exampl es of this

would be the bilinear sys terns co nsidered herein with negative post-yield tang ent

stiffnesses. Sorne systerns are "unconditionally stable," in that displacements are bounded
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regardle ss of the duration of shaking. Examples of this are bilinear hysteretic systerns with

positive post-yield tangent stiffnesses. The definition of stability is based on an imaginary

skeleton curve drawn halfway between the loading and unloading envelopes for a structural

model. So long as this skeleton curve is positive for positive displacements (or negative

for negative displacements ) the system is termed stable. Negative slopes of the skeleto n

curve correspond to potentiaIl y unstable systems. The imaginary skeleton curve may be

positive in sorne ranges of displacement and negative in others. Thu s, sorne syste ms may

are termed "conditionaIly stable." These definitions have not been fuIly evaluated at this

time. However, an important ramification of these definiti ons is that classic model of a

stiffness degrading system would be considered , for sorne loops, only co nditionaIly

stable .

It appears that a definitive investigation of P-LI. effects has yetto be carried out. The

studies tha t have been done indicare that p.LI. effects can significantly increase ductility

demands, especially for long duration earthquakes, for systerns having large values of PIL,

design ductility (~t. or Z) factors equal 10 or greater than 4, and for structures with periods

near or less than the predominant period of the ground. Thus far, analytical investig ations

have not developed a rational basis for dcsign considering p.LI. effects.
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DESIGN OF STRUCTURES TO RESIST p-~ EFFECTS

A number of inelastic dynamic analyses have been carried out to assess P-Ó effects

on actual struc tures and to devise design procedures and criteria. Nearly aIl of these have

focused on building structures. In this sect íon, sorne of these studies will be reviewed. In

addition, the provisions of various building codes related to P-ó effects will be presented

and compared with evolving Caltrans criteria.

Results of Analytical Pa r arn eter Studies. -- In most ana lytica l studies,

geometric nonlinearities had little effect on weIl designed building s. Typical of this is an

early study by Powell and Rowe (1976) in which a number of ten story frames were

analyze d for five different ground motions. They found only small increases in inelastic

response when P-Ó effec ts were includ ed in the analyses. The maximum inelas tic ínter­

story drift computed for these frames was, however, only 1.2%.

Moss and Carr (1980) ca rried out a parameter study on 6, 12 and 18 story

reinforced concrete framed structures. The resul ts of their inelastic dynamic analyses

indicated that, if the inter-story drifts obtained ignoring P-Ó effects were less than 1.5% of

the story heights, then the maximu m displacemen ts including P-Ó effects were equal or

slight1y less than the values predicted ignoring P-Ó effects.

The smaIl reduct ions in displacement were attributed to the shift of the structure's

periodoSince the strength of the structures analyzed was selected on the basis of the period

computed ign oring P-Ó effects and the design spectrum monotonicaIly decreased in

amplitude with increas ing period, this period shift resulted in structures stronge r than

would be required had the period been computed considering geometric nonlinearities. In a

independent study of this effect, Andrews (1977) found that while disregarding geomctric

nonlinear ities resulted in stronger structures, the amount of increase did not fully

compensate for the loss in energy absorption capacity of the structure when P-Ó effects

were applied. Thu s, the minor reductions in displacement at smaIl drifts with P-Ó effects

included may be a ramificaúon of the particular ground rnotion used in the analysis.

Moss and Carr (1980) also found that as drift indices (co mputed ignoring P-ó

effects) exceeded 1.5%, displacements computed accounting for geometric nonlinearities

rapidl y exceeded the values computed when P-Ó effects were discounte d. For example,
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the ralios of displacements with P-L'. effec ts lO those without were approximately I.S and

2.S for drift indices of 2% and 3%. respectively.

Moss and Carr suggest (as does Pauley (1978» that it is more practicable to control

excessive displ acernents in frame structures with important P-L'. effects by increasing

strength lhan by increasing stiffness. It should be noted (Newmark (1971 )) that this is not

the case when P-L'. effects are unimportant; increases in strength have little effect on overa ll

displacement. Where P-L'. effects become important, increasing strength expands the elastic

range of response. thereby reducing the range over which the post-yield tangent sti ffness

may be negalive. Moreover, Andrews (1978) argues compellingly that it is more effective

in design to control P-L'. effects by limiting drifts.

Jury (1978) also carri ed out a study of six, twelve and eightee n story rein forced

concrete frame s. This study focused on the amount of strengthening needed for columns to

achieve a strong co lumn-weak girder designo The frames were designed in conformance

with the New Zealand Stand ard Code of Practice, i.e., drifts at a ductilit y of 2.S were

lirnited 10 1% of story height. He found that P-L'. effects were important and that lateral

drifts in excess of 2.3'70 were sornetimes attained. For sorne of his frames, P-L'. induced

forces were as much as SO% of the strength of the structure. These struc tures, like those

analyzed in the previously mentioned studies , tended 10 form plastic hinges in the beams.

As a result, complete collapse mechanisms were not formed and it is unlikely that the

structures developed negative post-elastic tangent stiffness.

Several studies have also been made related to steel frame structures, These are

similar in thei r findings to those based on reinforced co ncre te frames. For exam ple,

Mont gomery (1979) found that P-L'. effects need be considered only when ductility

demands exceed 2. or when the base shear coeflicient for the structure is less than 0.10.

Trjondro, Moss and Carr (1988) found that p. L'. effects were insignificant in mid­

rise steel frames when the lateral design drifts were limited 10 I.S% of the story height.

Purth erm ore, they found that New Zealand design procedures (see later in this section)

provide an adequate means of controlling and compensating for P-L'. effects so long as the

des ign drift index is less than 1.7 to 2'70. Typically, steel framed buildings are Iighter, but

more flexibl e than concrete buildings. Thus, one might expect a smaJler magnitude for PIL

in such structures, but a larger lateral displacement. Drift control was again found to be the

key for minimizing P-L'. effects.
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MacRae (1990) also studied design criteria for steel frame buildings subjected to P­

li effects. In this case he used an assumption that lhe inelastic response of the frame would

be simi lar 10 that obtained applying the design earthquake spectrum elas tically and

accounting for the softening effect of geornetric nonlinearities. Simplifications in computing

the distribution of lateral forces were introduced, Based on this procedure. acceptable frame

performance was observed.

The aboye frames were designed in accordance with comm on building design

practices which stipulate strong column-weak girder designs. The structures were midrise

frarnes , and higher mode effects were found 10 be important in determining the temp oral

distribution of plastic hinges over the height of the building. These two factors made it

unlikely that a complete collapse mechanism would formo Kelly (1977) studied cases of

reinforced concrete frames where column hinging was intentionally induced. He found that

the struc tures showed "a tendency towards continually increas ing deform ations in one

direction, indicating progressive failure as the poli moments reached high proportions of

the ultimate colum n rnornents." He concludes his srudy saying "that multistory reinforced

concrete structures relying on column hinge mechanisms are unsatisfactory for earlhquake

resistance when designed 10 code loading. or even twice code loading , in spite of ducti le

detailing. There is a signíficant risk that large deformations would initiate incremental [poli]

collapse• ...." These obse rvations support the requirements in most build ing codes that

promote the formation of strong column-weak girder collapse mechanisms.

As indicated previously, it is not expected that multistory buildings form a complete

collapse mechanism. Even under monotonically (statically) applied lateral loads, a complete

collapse mechanism is not often formed until quite large lateral deflections. As a result of

the force redistribution associated with this success ive formation of plastic hinges, the

plastic strength of structures is often much greater than their ultimate design force (an

increase of 300 to 500% is often cited in U.S. Iiterature for buildings). This produces a

sign ificant post-yield strain hardening. Geometri c nonlin earities must ove rco me this

deformation hardening before the effec tive post-yield tangent stiffness becomes negativo.

Figure 8(a) conceptually plots the restoring force characteristics of a struct ure where Poli

effects amount 10 about 50 % of the initial ultimate design strength of the structure at a

displacement ductility or 8. In this case. Poli cffccts are of littIc practical co nsequc nce.

Thu s, most building codes treat poli effects leniently, through a combination of (a)

stipulated strong column - weak girder and other proportioning requirements that thw art the
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formation of a complete eollapse meehanism and result in a strueture generally mueh

stronger than required: (b) drift Iimits and (e) strength inereases where P-Ll indueed forees

exeeed sorne threshold.

The adequaey of sueh provisions for simpler building systems that are not likely 10

have sueh high over-strength and may form complete eollapse meehanisms is uneertain.

Similarly, the applieability of sueh provisions to bridge struetures is uneertain, beeause of

the lower degree of redundaney and the lower ratio of plastie to ultimate eapacities. For

example, Fig. 8 (b) sehematieally illustrates the behavior of a system with 50% inerease in

strength due to deformation hardening, where 50% of the initial strength is needed to resist

P-Ll effeets at a displaeement duetility of 8. Clearly, P-Ll effeets will have an important

influenee on the dynamie response, and a negative post-yield tangent modulus devel ops.

The simplified analyses deseribed in the previous seetion of the repon are more likely to be

more applicable in sueh cases than the building analyses eited in this section; provided, of

course, that "effective" strength and deformation softening parameters are utilized.

Load , R
Ignoring P- a

_- ---.1:- •Load ,R

Over-streng th

---------_!-
Disp .,aInitial Yielding

Over-strength 7
-1-" ,

-------------------- _!-

Including P- a

Ignoring P- a l

- _..- ..- .._.. - _..- _.
P-a Effect ---l - "_. -

Initial Yielding

P-a Effect Disp ., a
..- .._.._..- -.;.

' - " - " _ .. J. ._ .. _ .. _ .

a) High Overstrength b) Moderate Overstrength

Fig. 8 P-Ll Effeets on Actual Struetures Exhibiúng Deformation Hardening

It is also signifieant 10 note that most of the inelastie analyses of buildings discussed

aboye used relatively short durati on ground motions, like the Parkfield, El Centro, and

Pacoima Dam records. Few studies considered ground motions with durations as long as

those that might be anticipated in a magnitude 8 earthquake appropriate for design in

California. Because of the sensitivity of P-Ll effects 10 the duration of shaking, sorne of

the conclusions of these studies might change if longer duration events were considered.
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Unifor m Building C odeo -- The 1991 and 1988 editions of the Uniforrn

Building Code (Intemational Congress of Building Officials (1991 » contain explicit

strength and stiffness provisions related to P-ñ. effects. P-ñ. effects need not be checked, if

the displacements within a level do not exceed O.02/R w times the heigh t of that level , Rw

is a factor used in the UBC in the same way Z is used in the Bridge Design

Specificatíon Ma nual. For ductile mome nt frames, constructed of reinforced concrete,

the factor Rw is equal to 12. lt must be recognized that the loads considered for design in

the UBC are at the working stress level, Thus, a better assessment of these prov ísíons can

be made if they are extended to the ultimate load leve!. Since a seismic load factor of 1.4 is

utilized for reinforced concrete frames in the UBC, the elastic drift limit at ultim ate load is

1.4(0.02)/12 = 0.0023 or 0.23% of the height of the level in question.

In additi on, the code contains an upper limit on elastic def1ections under the design

loads. Th ese are "0 .04/Rw or 0.005 time s the story height for structures having a

fundamental period less than 0.7 secs. These drift Iimits are intended in pan to help

mitigate displacement induced damage to nonstructural components. For structures having

a fund amental period of 0.7 secs. or greater, the calculated story drift shall no t exceed

0.03/Rw or 0.004 times the story height." Again considering Rw equal to 12 and a load

facto r of 1.4, maximum elastic drift indices of 0.47 % and 0.35% are obtained for a

structure at ultimate load with periods below and aboye 0.7 secs, respectively.

Whi le these values appear low, it must be recognized that the maximum inel astic

drifts will be considerably larger, since an Rw value of 12 corresponds to a large value of Z

(z 1211.4 =8.6) The corre sponding limit on inelastic drifts (assuming Z = 1) is on the

order of 3 and 4 % for structures with periods aboye and below 0.7 secs, respectively ,

assuming the elastic and inelastic displacements of structures are about equa!. Similarly.

the maximum drift index for not having to consider P-ñ. effects becomes 2% for Z = 1.

Not with standing these limits, the UBC permits even larger displacements provided one

can demonstrate integrity is maintained for structural elements and for nonstructural

components that affect life safety.

The UBC stipulates that P-ñ. effects can also be ignored, if the following inequality

holds:

(7)

19



in which vw is the applied lateral working stress shear at a level; and

liw is the corresponding lateral det1ection of the level ,

The value of P includes contributions from unfactored dead and live loads. lf the structure

had a stre ngth equal 10 1.5Vw (assuming a load facto r of lA and a capacity reduction

factor of 0.9) and the limiting del1ection and force requirements in the code were met, P-Ii

effects would reduce the effective capacity of the structure by (=12(0. 1)/ 1.5 =0.8) 80%

when the maximum inelastic deformation was developed. One reason such large

reductions in capacity are permitted is because highly redundant frame structures are

bel íeved, as discussed aboye , to be 300 to 500% stronger than required by designo

Significantly, this over-strength need not be dernonstrated by a design er following the

UBC provisions. If the inequality in Eq. 7 is violated, P-Ii effects are to be considered

explicitly in design o Methods for doing this are not specified.

NEHRP Recornrnend ed Provisions. -- Recently recomm ended provi sions

for the development of building codes also contain provisi ons for handling P-Ii effects.

The se NEHRP provisions (BSSC (1988 )) limit drifts to 1.5% of the height of the level

under consideration (1% is stipulated for important structures that should be able to

function immediately following an earthquake ). Drifts are computed on the basis of

magnifi ed ultimate loads. In the case of ductile moment resisting frames, the ultimate load

is obtained from the elastic design spectrum by dividing by 8. and the maximum inelastic

displac ements are then estirnated by multiplying the displacements at the ultimate load by

5.5. If one considers displacements estimated using the full elastic response spectrum, the

maximum driftlimit would increase to 8( 1.5%)/5.5 = 2.2%. Assuming equivalent elastic

spectra, the NEHRP provisions are considerably more restrictive than the those in the

UBC.

P-Ii effects are evaluated atthe ultimate load level rather than atthe working stress

level as done in the UBC. P-Ii effects can be ignored, if the following inequality is

satisfied :

in which Vu is the applied lateral ultimate design shear at a level; and

IiU is the elastic lateral det1ection of the level corresponding to Vu .
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Since el astic analysis is used to evaluate displacements, Eqs. 7 and 8 are equivalent.

Where P-Ll effec ts need to be computed, a rational analysis to determine member forces is

outlined, and the computed first order drifts are amplified by (O.9/(I-(PLlulLVu )). This is

equivalent to applying additional lateral loads to the structure equal to O.9PLlu/L, and is

roughly equivalent to the UBC provisions.

New Zealand Standard Code of Practice. -- New Zealand seismic

provi sions (Pauley (1978 ), Standards Association of New Zealand (1976» are more

restrictive than those in the U.S. when it comes to consideration of ductility, drift and P-Ll

effects . For exarnple, ihe maximum ductility allowed for ductile reinforced concrete frames

is 4. The maximum inelastic drift is estimated by multiplying the (elastic) displacements at

the design ultimate load by 2.5. In the lower stories of a multistory building the average

estimated drifts over the height of the structure are doubled to account for the probable

deflected shape of a frame structure and the tendency of yielding to concentrate in the lower

stories . The drifts computed in this fashion cannot exceed 1'70 of the story height. These

provisions are much more restrictive than U.S. provisions. If the drifts are extended to the

level corresponding to the elastic design spectrum, a drift index of only 1.6'70 would be

permitted in comparison to 2.2'70 for the NEHRP provisions and 3 to 4'70 for the UBC.

According to the New Zealand standards P-Ll effects are to be evaluated, if the following

inequality is violated:

(9)

in which H is the total height of the structure;
Vu is the ultimate desígn shear at a level;

Llu is the ultimate displacement at the roof; and

A. is a displacement amplification factor accounting for the inelastic displaced

shape of a frame structure.

For the lower levels of multistory structures A. is taken as 2, but for single level structures A.
would equal unity. The value of Llu is significantly different in this expression than for Yu

in the NEHRP provisions. Here, it is taken to be 2.5 times large r than the deflections

computed elastically for the ultimate design loads. Recognizing this fact, the New Zealand

provisions become 67% more restrictive than NEHRP provisions. Moreover, where P-Ll
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effects are 10 be cornputed, the magnitude of the incremental design force is approximately

2.5 times that sugges ted by the NEHRP provisions (for all other factors being equiv alent).

It can be shown that the New Zealand provisions are based on Eq. l with e equal to 2;

Le.• conservation of energy under monotonic loading is assumed (Pauley (1977».

Special Provisions for Inverted Pendulum Structures. -- The NEHRP

provisions contain special requirements for systems called inverted pendulums. In these

structures, the lateral load resisting system resists the seismic forces essentially through

cantilever action as well as provides vertical support for gravity loads. A1though building

code provisions were not formulated with bridg e struc tures in mind , this system

corresponds to single column viaducts or to multi-column viaducts with a pin provided at

one end of the co lumns. Similarly. the design ation might be appli ed to multiple level

viad ucts which have pins provided at one end of all columns (as envisioned in the San

Francisco area double deck viaducts).

For ductility detailed mernbers in steel or concrete , the NEHRP provisions red uce

the elastic response spectrurn by a factor of 2.5 (rather than 8). This results in lateral forces

4.8 times greater than those used for the design of frames. Moreover, the drift limi ts

imposed on inverted pendulum structures are computed at the full elastic response level,

and not at a reduced level as is the case for framed structures. This results in a maximum

permitted drift index of 1.5% for the NEHRP provisions (69% of the eq uivalent value

permitted for framed structures).

The more stríngent requirements for inverted pendulum structu res is a result of the

reduced redundancy of these structures, their limited post-yield over-strength relative to

trames. and the formation of plastic hinges in critical vert ical load carrying eleme nts

(columns).

Earlier editions of the UBC required force s for inverted pendulum structures

approximately 3 times those used for ductile moment frames. However, the UBC no

longer contains explicit provisions for inverted pendulum structures, The frame provisions

in the UBC described aboye are not applicable to the design of viaducts, since plastic

hinges are allowed to develop in bridge columns (column hinges are generally not permitted

in rei nforced co ncrete buildi ngs aboye the foundation). The UBC wou ld currently

categorize bridge structures as "undefined systerns." For these systems, dynamic analysis

is required to determine the level of elastic level forces and displacernents, and technical and
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experimental data must be used to substantiate the force reduction factors utilized in designo

No special drift limitations are stipulated for undefined systerns.

Cornrnents. -- Caltrans provisions for determining p-tl. induced forces for the

Terminal Separator are slightly more stringent than New Zealand provisions for building

design o bUI go far beyond what is currently done in the U.S. for buildings. The loose

restriction on lateral displacements in the Terminal Separator criteria may result in situations

where p-tl. effects may become substantial. On the other hand, the maximum limit of 1%

of the story height (computed for Z = l and considering cracked secti on properties) as

used for the retrofits of the San Francisco double deck viaducts is more restrictive than

New Zealand provisions . However, this restriction may be warranted beca use of the

tenden cy of these types of structures to form "soft stories ." In this case yielding would

concentrate in one level and the other would remain essentially elastic. This type of

behavior would substantialIy increase (possibly double) the inelastic displacement dernand

on the yielding level relative to the that computed on an elastic basis (see Fig. 9). Cauti on

must be exercised in the design of systems susceptible to soft or weak stories because of

these increased local ductility demands.

~'-... .
Inelasttc 5hape --
"Soft'' 5tory Mechanism

"".__ Nearly Equal Top
Displacement
Expected

Elastic 5hape -~

Displacement

Fig. 9 Soft Story Formation in a Double Deck Viaduct

The studies on P-tl. effects that have been conducted to date are limited in scope and

applicability. For instance, few consider relevantly long ground motion durations, realistic

restoring force characteristics for reinforced concrete. and idealízatíons applicable lO bridge
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structures. Most studies are forrnulated in a manner differing from that used in designo

Additional studies are needed to clarify these issues for the design of bridges .
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ANALYTICAL INVESTIGATION OF OESIGN METHOOS

To assess design methods being considered by Caltrans for sorne of its major

structures, an analytical study was carried out using simple single degree of freed om

models (like Fig.I). Most previ ous analytical investigations non-dimensionalize the

equation of motion for the single degree of freedom model, and thereby study the time to

collapse or the increase in ductility demand as a function of parameters that have no direct

design interpretation.

In this study, an atternpt is made to formulate the analysis problem in a design

context, The particular focus of these analyses is identification of the strength increase

needed in order for a structure subjected to gcometric nonlinearities to devel op the same

displacement ductility it would if lhe geometric nonlinearities did not exist, In this way, the

severity of inelastic response for the two systerns would be equivalent.

A series of simple structures were designed elastically. To do this, Z reduction

factors were applied directly to the response spectra for the specific earthquake records

used in the analyses (thereby avoiding problems associated with scaling ground motions so

that their spectrum would match sorne smoolhed target spectrum). The ductility demands

on these systems were then numerically computed ignoring P·Ll effects, P·Ll effects were

then introduced and the strength of the structure was increased incrernentally until the

ductility demand of this system equaled that of the structure designed ignoring P-Ll effects.

In this fashion , the inelastic response of the structure would be no more severe than would

be permitted in conventi onal designo Comparison of the required strength increases with

those indicated by Eqs. l and 2 provides an insight into the reliability of these equations

and may suggest improvements, where needed.

In this section, the analytical models and ground motions used are first described.

A brief series of time history responses are then presented to illustrate sorne of the basic

behavior exhibited by inelastic systerns subjected to P-Ll effects. The results of the

paramcter study are then examined to assess the effect of period, intensity of geometric

nonlinearity, and Z factor on required strength increases. In addition to con sidering

different models for the restoring force characteristics of the structure, the influences of

ground motion type and duration are also partially assessed. The suitability of Eq. l is

addressed, and an alternate method is suggested.
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Analytical ModeI. -- To carry out these investigations. a series of single degree

of freedom models with nonlinear res toring force characteristics are subjected to time

history analyses. Two types of hysteretic models are considered. The firs t is a bilinear

hysteretic model with a zero or negative post-yield tangent stiffness, as shown in Figs. 3

through 6. The second model is a conventional stiffness degrading model with P-f. effects

idealized as shown in Fig. 7.

Th ese models must be considered lo represent the "effec tive" mech anical

charac teristics of the structure, and not just those based on the Bridge Design

Spec ifica tion Manual. Most of the analyses at this time are based on the bilinear

idealization. Initial discussions thus focus on results for the c1assic bilinear model. Results

for stiffness degrading models are discussed subsequently,

For simplicity, only fOUT structural periods are considered: 0.5. 1.0. 2.0 and 3.0

secs. These periods wilI be shifted in the analyses as required to account for P-A effects,

but they wilI be referred to in the text by their nominal values. For firm ground conditions

computed elastic and inelastic displacements are expected to be nearly equal for all structure

periods considered (Newmark (197 1) and Mahin (l981 )J. For ground motions recorded at

soft soil sites, inelastic displacements computed may exceed elastic values for structures

with periods less than the predominant period of the ground.

Viscous damping in aIl analyses was taken to be 5% of critica!. Hysteretic energy

loss associated with material nonlinearity is accounted for automaticaIly in the analyses.

Ground l\fotions. -- Only two ground motions are considered in these

preliminary studies. The first is the S69E component of the 1952 Taft (Kern County)

earthquake . This 7.7 event was recorded on 40 ft. of alluvium at an epice ntral distance of

41 km. The second record is the outer wharf record obtained in Oakland during the 1989

Loma Prieta earthquake. This soft soil site is approximately 70 km from the epicenter of

this magnitude 7.1 earthquake. To assess the effects of larger and longer duration events ,

a copy of the Taft record has been added in sorne of the analyses to the end of the original

record. effectively doubling the duration of the earthquake.

Time histories and response spectra for these records are shown in Figs. 10 and 11.

The predominant periods in the Taft spectra are near 0.3 secs.. weIl below the range of

periods considered herein. The Oakland Wharf record has predominant periods around 0.7
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and 1.6 secs . As a result, one would anticípate that ductility demands could substantially

exceed the 'effective' Z values for the structures with 0.5 and 1.0 secoperiods.

Design of the Basic Structures Analyzed. -- The strengths of the structures

analyzed were determíned from the elastic response spectrum for the earthquake records

used in the analysis. The plastic strenglh of the structure was computed, as done in current

design procedures, by dividing the design spectral acceleration (for the app ropriate

damping and period) by an 'effective' ductility and importance factor, Z. Rather than using

a smoo thed ARS spectrum in these computations, the spectrum for the particular

earthquake used in the analysis is employed. This avoids problem s associated wilh fitting

an earthquake's spectrum to a predetermined smoothed spectrum.

The yield strength of a system ignoring P-ll effects would be:

(10)

in which m is the mass of the systern (here equal P/g ); and

Sa is the pseudo-spcctral acceleration for the earthquake record, period and

damping considered.

In these analyses, effective values of Z were taken to be 1, 2, 4, 6, and 8. The factor Z is

taken to be independent of period , unlike the Bridge Design Specification Man ual

where Z varies (at least in the short and intermediate period ranges) inverse ly with periodo

These Z values should be taken to be "effective" values, since a structure designed for a

given yield level will be stronger due to over-design, real material yield properties, and

strain hardening. Thus, the 'effective' Z values used herein do not correspond to current

Caltrans design practíces, The 'effective' Z value appropriate for a simple bridge designed

with a Z of 4 may be between 2 and 3 because of the inherent over-strength.

If the structure remained elastic, the maximum elastic base shear, Re, would be:

(11)

and the maximum elastic displacement would be:

(12)
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where Sd is the spectral displacement corresponding 10 Sao

As shown in Fig. 12, several useful relationships can be developed based on the

slope of the post-yield branch of the envelop curve. Here, the slope -PIL is represented as

a fraction p times the initial elastic stiffness of the structure. Ralher lhan setting the value of

p to arbitrarily selected values (e.g., 0.02) as done in most other studies (e.g. , Bemal

(1987)), p will be selected herein to reflect the severity of the P-L\ loads at the elastic

design displacement corresponding to Z = 1.

For intermediate and long period structures it is usual in the absence of P-L\ effects

to assume lhat lhe maximum elastic and inelastic deflections are the same. If this is done

here, it is possible to estimate the reduction in apparent strength that results from the P-L\

effects (i.e., PL\elL). This reduction, at the elastic displacement L\e , is represented in

Fig.12 by Ryla. The structural strength remaining at this point to resist seismic actions is

given by:

Ry" = Ry (I-I/a) (13)

lt is believed that this type of calculation lends itself to current elastic design methods, and
lhat a designer may already compute Ry" in order to assess intuitively the likely severity of

P-L\ effects,

In this study, values of a are taken as 2, 4, and 8 representing reductions in

strength at the maximum elastic displacement of 1/2, 1/4 and 1/8, respectively, of the

strength computed disregarding P-L\ effects . While the a value of 2 may seem severe, it

should be recognized that the UBC relation (Eq. 8) permits P-L\ effects to be ignored for a

values as low as 1.25! This later value corresponds to an 80'70 loss in capacity, provided

the structure has negligible over-strength,

From geometry, an expression can be obtained for p in terms of Z and a:

p = I/(aZ) (14)

Values of p corresponding to the conditions considered in this parameter study are shown

in Table l below.
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The reduced stiffness of the structure, K', in the elastic range due to P-Ll effects ,

may be written as:

K' = K (1 - p)

and the corresponding shifted elastic period, T . is given by:

T' = T / (1 _ p)0.5

(15)

(16)

As can be seen in Table l . the elongation of period due to geometric nonlinearities is less

than 5% for most of the structures considered . However, in the most severe case (1ow ex

and Z ) a shift of 15% would occur. These elongated periods can significantl y alter the

dynamic response of a structure and change the required design force if the shifted periods

were considered in designo

ex

Z 2 4 8

2 -25.0 (1.15) -12.5 (1.07) -6.3 (1.03)

4 -12.5 (1.07) -6.3 (1.03) -3.1 (1.02)

6 -8.3 (1.04) -4.2 (1.02) -2.1 (1.01)

8 -6.3 (1.03) -3.1 (1.02) -1.6 (1.01)

Table l Post-yield Tangent Stiffness as a Percentage, p. of the Initial
Elastic Stiffness for Parameters Considered in this Study

(Values in Brackets Represent Change in Elastic Range Period as Fraction
of Structural Period Computed Disregarding Geometric Nonlinearities)

The yie ld displacement of the structure, Lly =Sd/Z , does not change with the

applica tion of geometri c nonlinearities. However, the apparent yield strength, R'y, does

reduce to:

R'y = K'Lly = K (1 - p) Lly = K'Sd/Z (17)

Continued loading in the inelastic range will gradually decrease the strength of the

structure until the forces induced by the geometric nonlinearities cancel the mechanical

resistance of the structure. At this point the structure is statically unstable and will collapse
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under its own weight. The critical displacement at which this will occur is easily com puted
from geometry (or statics: í.e., PM = Ry) and can be expre ssed as:

L\c =Sd/(pZ ) =L\y/p

or

and the corresponding static collapse displacement ductility is given by:

Ilc =L\clL\y = I1p= exZ

(l8a)

(l8b)

(19)

Since Ilc corresponds 10 static buckling of the structure. it is clear that the design ductility

value should be far smaller. In fact, Takizawa and Jennings (1980) noted that the dynami c

stability limit may be less than the static one by as much as 20 to 70%, depending on the

ground motion and structural characteristics.

From Eq. 18b and the assumption that for long peri od structures (Ne wmark

(197 1» Z equals the structure's design ductility factor, ex is the factor of safety against

overall static buckling of the structure, Thus, for the examples considered herein , the

safety factors range from 2 to 8. Given the large scatter in response associated with

inelastic dynamic behavior, these factors of safety may prove inadequate for small ex.

It sho uld be noted that the residual capacity of a structure should be maintained

aboye a level necessary to prevent collapse durin g aftershocks. For exa mple, if large

perm anent offsets occur, the strength of the structure following an earthquake will be

significantly reduced by the P-L\ effects. This reduced capacity may not be sufficient to

maintain stability in the many aftershocks anticipated following a major earlhquake. Many

structures have been observed to fail during aftershocks as a result of accumulated inelastic

deforrnations (Mahin (1976)).

This problem will not be addressed herein . However, special design procedures

may need 10 be developed in order to limit displacements to insure satisfactory behavior

during aftershocks, or immediate post-earthquake shoring should be planned. Preliminary

studies in this repon and elsewhere (MacRca and Kawashim a, 1991) indicate that the

residual displacements in structures subjected 10 cvcn moderate geomctric nonlinearities are

nearly equal to the maximum displacements developed during the ean hquake. As such,
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simple procedures may be devised to estimate the residual capacity of the structure (i.e.,
R y residual = R y"= Ry - PLlmax/L assuming that Ll max can be accurately estimated).

Similar procedures have been outlined by Berna! (1 987).

Response of Basic Structures. -- The structures analyzed were designed

considering them to have a unit mass, one of the pre-selected periods and Z values, and

strengths given by Eq. 10 based on the actual response spectrurn for the record in question

for 5% viscous damping. The nonlinear ana!yses were carried out using the program

NONSPEC (Lin and Mahin (1983)).

The displacement ductility requírernents for both earthquakes are shown in Fig. l3

considering effective Z factors of 1, 2, 4, 6 and 8. The systerns considered in these plots

do not include geometric nonlinearities. The difference between the maximum

displacement ductility computed and the Z value used in design is an indication of how

well elastic displacements predict inelastic values.

For the period range considered, ductility factors resulting from the Taft record are

not highly sensitive to periodo For low Z values, the va!ue of Z reasonably approximates

the displacement ductility values. However, as Z increases, the displacement ductility

becomes as much as 75% larger than Z .

For the Oakland Wharf record the ductility demands are sensitive to periodo

Ductilities computed for the short period structures are much higher than Z as expectcd,

sometimes by as much as 340%. The same trend would be expected for the Taft record, if

periods less than 0.3 seconds were considered (Mahin (1981) .

The ductility and importance factor Z used in the Bridge Design Specification

Manual increases in the short period range. Unusually large ductilities might thus be

expected for bridges with periods shorter than the predominant period of the design

spectrum since ductilities demands tend to exceed Z as Z becomes large and as the period of

thc structure falls below the predominant period of the ground motion.

The consequences of adding geometric nonlinearities to these systems can be seen

in Fig. 14. The hysteretic response of an elasto-perfectly plastic system with Z equal to 4

and a period of 2.0 secois shown for the Taft record in Fig. l4a . As indicated in Fig. l3a ,
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the ductility demand for this structure nearly equals Z. When geornetr íc nonlinearities are

introduced, the displacement demands increase as shown in Figs. 14b. 14c and 14d (for

reduction in strength at maximum elastic displacement of 118. 1/4 and 1/2 of the initial

strength of the structure, respectively). It can be seen that unstable response results for

c 's of 2 and 4.

The maximum displacement ductility demands for elasto-plastíc systems with and

without P-~ effects are listed in Table 2 and 3 for the Taft and Oakland Wharf records,

respectively. In the tables, an a value of infinity represents the case without geometric

nonlinearities. It can be seen from the tables that most of the cases with a equal to 2

collapse and many ductility demands for a equal to 4 exceed ~c'

The ratio of displacement demands for systems with and without geometri c

nonlinearities are plotted in Figs. 15 and 16. From this data it is clear that the effec t of

geometric nonlinearit y is particularly seve re for systems with large a (P/L) and Z

(ductility) ratios. In many cases. the ductilit y demands exceed the collapse ductility

capacity given by Eq. 19. In sorne cases there were minor reducti ons in ductilit y demand

for structures with geometric nonlinearities included. This reduction is likely due to the

geometric nonlinearities shifting the period of the structure (see Table 1) away from a local

peak in the spectrum for the particular earthquake used in the analy sis. However, the

maximum displacements of systerns with P-~ effects included were generally much greater

than es timate d by Z'~y ' For the Taft record 81%. 88 % and 100 % of the structures

considered have increases in ductility demands greater than 20% when a is taken lO be 8. 4

and 2. respectively, It can be seen that P-~ effects cannot be safely ignored, except for the

very restrictive case of a ~ 8 and Z :O; 2.

Required Strength to Limit Increase in Ductility Demands due to P-~

Effects. -- To mitigate the adverse effects of geometric nonlin earities on ductility

demand s, one can increase either the structure's stiffness or strength, or both . As

discussed in the section on design procedures, it may be most effec tive lO control P-~

effects by limiting drifts. Reducing drifts has the effec t of reducing the maximum P-~

induced forces. and result s in an increased a for all other factors bein g the same.

However, it may not be practicable to increase stiffness substantially in many situations.

If stiffness cannot be increased, one must establish the required strength increment to limit

the ductility demand on the system to acceptable levels.
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Z Period or o.
Collapse Ductility, ¡.tc 2 4 8 00

¡.le 4 8 16 00

0.5 00 2.49 (-12) 3.47 ( 22) 2.84

2 Period 1.0 00 00 4.05 (78) 2.27

2.0 00 1.81 ( 14) 1.64 ( 3) 1.59

3.0 00 2.49 ( 74) 1.55 ( 8) 1.43

¡.le 8 16 32 00

0.5 00 00 27.5 (526) 4.39

4 Period 1.0 00 00 15.2 (176) 5.50

2.0 00 00 3.72 ( 1) 3.67

3.0 00 00 7.06 (65) 4.28

¡.tc 12 24 48 00

0.5 00 00 00 10.5

6 Period 1.0 00 00 00 11.1

2.0 00 00 8.54 ( 43) 5.96

3.0 00 00 14.7 ( 90) 7.72

¡.tc 16 32 64 00

0.5 00 00 00 13.2

8 Period 1.0 00 00 55.6 (355) 12.2

2.0 00 00 16.0 ( 86) 8.62

3.0 00 00 17.6 (80) 9.77

Table 2 Displacement Ductility Demands for Taft Earthquake Record; Elasto-plastic

Systerns: Values in Brackets indicare Percentage Change frorn Case with o. = ce,
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Z Period or ex
Collapse Ductílity. u- 2 4 8 00

Ilc 4 8 16 00

0.5 00 00 2.85 2.72

2 Period 1.0 00 2.99 2.65 2.38

2.0 1.48 1.52 1.53 1.48

3.0 00 2.78 2.20 2.07

Ilc 8 16 32 00

0.5 00 00 27.6 10.1

4 Period 1.0 00 00 6.14 5.86

2.0 2.96 2.13 2.32 2.44

3.0 00 00 6.47 4.63

Ilc 12 24 48 00

0.5 00 00 00 20.2

6 Period 1.0 00 00 18.5 11.5

2.0 00 3.45 2.84 3.05

3.0 00 21.0 10.5 7.54

¡lc 16 32 64 00

0.5 00 21.3 00 26.8

8 Period 1.0 00 00 25.6 16.2

2.0 10.1 4.28 2.49 4.11

3.0 00 28.5 13.9 9.75

Table 3 Displacement Ductility Demands for Oakland Wharf Record;

Elasto-plastic Systems
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For design purp oses, Eq . 1 might be used to establish the requ ired strength.

However, the appropriate value of e has yet 10 be determined. In this phase of the

investigation, the strength s of the structures previously analyzed are increased. The

amount of increase is selected so that the ductility demand on the strengthened structure

with poli effects applied is essentially identical to that for the original structure analyzed

disregarding poli effects. If lhe inelastic response without poli effects was acceptabl e, then

the response of lhe strengthened system should be acceptable as well.

It is important to realize, however, that the displacements of the original and

strengthened systerns are not the same even though the ductility demands are. Thi s is

because strengthening will increase lhe yield displacernent, resulling in larger total lateral

displacements for the strengthened structure ai the sarne ductility demandoThis is shown

schematically in Fig. 17. This may have an important effec t where displacements need to

be controlled to limil pounding, discomfort to riders, repair costs, and so on. In such cases

even more restrictive design criteria may be required.

Load, R

Strengthened Structure

Original Structure

Displacement, li

Fig. 17 Effect of Strenglhening on Maximum Displacement
for Structures with Same Ductility

The effect of strengthening on dynamic response can be seen in Fig. 18 where a

structure with a period of 2.0 seco and designed with Z equal to 4 is subjected to the Taft

earthquake record. In Fig. 18(a) the elastic force and shear demands are plotted as well as

the bas ic envelop of the reduclion in stre ngth that might occur if poli effects were

considered. In Fig. 18(b) inclusion of poli effects (a = 2) is seen to lead to collapse of the
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systern. An increase in strength equal to 76 % of the original design strength is seen to

avoid collapse in Fig. 18(c). Although the displacement demand is much larger in this

latter case, the ductility demand is identical 10 the case where poLi effects are ignored.

It is important to note in this example that, while the reduction in strength at the

elastic displacement of lhe structure is 50 % of the initial yield strenglh (a = 2), the

required increase in strenglh to achieve thesame ductilitydemand is 76 % of the initial yield

strength. The required strenglhening exceeds the magnitude of the poLi effect at the elastic

dellection by a factor of 1.5. Thus, it may not be possible to obtain reliable or conservative

design forces from Eq. 2 (with the maximum displacement estimated by the maximum

elastic displacement of the systern) or from Eq. l.

This same process is repeated for all of the structures considered in the previous

parameter study. The increase in strength used to compensate for poLi effects (Eqs, I and

2) may be expressed in terms of the parameters introduced above. In this case, it will be

assumed that an arbitrary fractíon, 13, of the total strength loss at the maximum elastic

displacement will be added to the strength of the system. Since it is expected that design

will be done on the basis of elastic analysis, the maximum displacements are estimated
using the maximum elastic displacements of the structure, Lie, computed ignoring poLi

effects.

The total required strength of the system, R*y, is given, as shown in Fig. 19, by

the expressions:

or

y = (l+ l3/a)

(20a)

(20b)

For this formulation the value of 13 can be determined empirically to achieve the desired

equality of ductilities in systems with and without poLi effects, The case where 13 equals

unity corresponds directly to Eq. 2 provided Li max = Lie. It is useful to use the same

forrnulation to assess Eq. 1. A general relation between 13 and e (from Eq. 1) can be

established assuming that the maximum inelastic displacement is LiyZ (i.e., Z = ¡ló)' The

relation may be developed considering:
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lf we assume Sd =ll~t.y' Pll~t.yI(L) =Ryla. Consequently, from Eq. 21 :

pt.yI(eL) + Ry/(ae) = f3Ry/a

(21)

(22)

which, by noting that RyU(aPt.y) = Z (from geornetry eonsiderations in Fig. 12), ean be

solved for e:

e = [J + aPt.yI(LRy) ]/13 =[1 + IIZ ]/13 (23)

For J00'70 (13=1) of the P-t. effeet at the maximum elastie displaeement to be eonsidered

for Z = 4 , the value of e must be taken equal to 1.25, as noted earlier. From Eq. 23, e =

2.5 for 13=112 and Z =4.

From a design perspeetive it is useful to rearrange Eq. 23 to solve for 13:

13 =[1 + IIZ ]/e (24)

so that for e =2and Z =4, 13 =5/8 =0.63. Similarly, for the design values used on the

Terminal Separator (e = 1.5 and Z =4) 13 =5/6 =0.83. That is, thc strength of the

structure must be increased by 83'70 of the P-t. forces computed at the maximum elastic

displacements, Sd.

The total design strength required can be expressed, using Eqs. 20 and 24, in

terms of the increase in original design strength:

y =R*YlRy = 1+ [1 + 1/2]/(e a ) (25)

Using this equation, for Z = 4 and e = 1.5, Yvalues of 1.42, 1.21 and 1.10 are obtained

for a values of 2, 4 and 8, respectively. lt must be recognized that P-t. effeets wilJ reduce

the actual eapacity of the structure from these values (see Eq, 17).

The formulation of Eq. 25 in terms of e impli es that the required increase in

strength to compensare for P-t. effec ts decreases with increasing Z. Thi s is counter-
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intuitive and results from the "1" term inside the brackets in Eq. 1. The y values from Eq.

25 rapidly approach the asyrnptotíc values listed in Table 4. These values will be compared

subsequently with values obtained from a parameter study.

o: y

2 1.33

4 1.17

8 1.08

Table 4 Values of y from Eq. 25 with e = 1.5 and Z =00

11 rnust be recognized that the assumption utilized in developing the aboye relations

between ~ and e are not strictly true (Le.. the maximum elastic displacement of a sys tem,

Sd, does not exactly equal llóLly). In fact, it has been shown earlier that inel astic

displacements will systematically exceed elastic ones for large values of Z. for structures

with periods shorter than the predominanl period of the ground rnotion. and for structures

subjected to large geometric nonlinearities.. Thus, one would expect systernatíc erro rs in

the values of ~ predicted from e in these cases. Equation 24 willlikely underestimate the

required value of ~ and Eq. 25 will unconservatively overestirnate e . The dala presented so

far would suggest that ~ values in excess of l/a (design strength increases are bigger lhan

strength losses due 10 geometric nonlinearities cornputed al Llel would be required in sorne

cases. This would correspond lO negative values of e. These errors will be examined

subseq uently.

Pa rameter Study to Id entify Required y Va lúes . -- Whil e Eqs. 20b and 25

indicate useful relationships, they do not indicate the values of y (or e l that are required to

limit displacement ductilities under the effects of geometric nonlinearities to part icu lar

values. To do this the structures analyzed previously were re-analyzed for different

strengths such that the computed ductilities equaled those for the systern with geometric

nonlinearities disregarded. A specially modified vers ion of the NONSPEC computer

program was utilized for this purp ose. The search procedure employed identified the

stronges t structure needed 10 develop the required ductility (10 within a specified tolerance

on the required strength),
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Figure 20 presents the y ratios cornputed using the Taft record for structures with

varying periods and differing a and Z values. Littl e systernatic variation in y is noted with

periodo There appears to be a slight decrease in y with increasing period and a local

minimum in y near 2 secs. period for a equal lO4 and 8.

There are significanl systernatic variations in y wilh Z and a (y is proportional lo Z

and inversely proportional lo a ). It should be noted that the required strengthening exceeds

lhe strength loss due lo geometric nonlinearities computed al the maxirnum computed elastic

displacemenl de when yexceeds 1 + l/a (namely, 1.5. 1.25 and 1.125 for a equal lO2. 4

and 8. respectively). This si tua tion occurs for nearly al l of the cases in Fig. 20. excepl

where Z = 2. As indicated aboye. Oin Eq. I would have 10 be taken as a negative number

for lhese cases to produce conservative results,

Table 5 Iísts the average values of y required cornputed for various periods as a

function of a and Z. The average required strength increases range from a low of 12 % for

Z = 2 lO147 % for Z = 8.

Z a=8 a =4 a=2

Comp. Eq. 25 Eq. 26a Comp. Eq. 25 Eq.26a Comp. Eq. 25 Eq.26a
(A ve.) 0=1.5 Eq. 26b (Ave.) 0=1.5 Eq. 26b (Ave.) 0=1.5 Eq. 26b

1 I.UO 1.17 I.UO 1.00 1.33 1.00 1.00 1.67 1.00
1.00 1.00 1.17

2 1.12 1.13 I.UU 1.24 1.25 1.00 1.36 1.5 1.20
1.00 1.20 1.45

4 1.16 1.10 1.07 1.38 1.21 1.35 1.75 1.42 1.70
1.22 1.48 1.80

6 1.31 1.10 1.31 1.63 1.19 1.65 2.14 1.39 2.0tl
1.38 1.68 2.07

8 1.53 1.09 1.51 I.Stl 1.19 1.91 2.47 1.38 2.40
1.51 1.84 2.34

Table 5 Strength Ralio y for Tafl Earthquake

48



3.0

2. 5

S
t

r 2 .. O
e
n

9
t 1.5
n

R
a l .:
t

i

o O.. S

0.0

\\.- ------__ r
\ [

\ »> l
\ .>:,-

f

I
l
,

---,, , ,
-- ' -~-...... ...... ', .... , ...- , -...... .......:.; - - -

~=

Z=2
Z= é
Z= 6
Z=8

I
I
I

O 2

Per i cc (sec) (a)

3 J 2

Per í cc (se c l (b)

3 O 2

Per i cc (sec) lel

Fig. 20 Gamma. Values EPI' models. Taft 569 E. 19·52 Kern Coun ty. a ) Q = 2. b ) Q = -l.

e ) o = S.

49



The tabul ated values of y. as antici pated from Eq. 25, depend systematically on Z

and 0:. The value of y is inversely proportional to 0:. However. contrary to Eq. 25 , the

larger the Z value. the larger is the required increase in design strength, y. Thus, ecannot

be a constant, but must decrease (and in fact become negative) with increasing Z.

The computed values of yare usually much larger than predicted with Eq. 25 using

e= 1.5. For example, for Z = 4 and o: equal 10 8. 4 and 2. the average computed y values

are 1.16, 1.38 and 1.75, respectively. These values are 1.05, 1.14 and 1.23, respectively,

times those values predicted by Eq. 25. Other values of y may be found in Table 5.

Tabulated values in Table 5 based on Eq. 25 consider e to equal 1.5. Values of y
would decrease for larg er values of e (like 2 as used in the New Zealand Standard Code ),

generally decreasing the reliability of the simplified design values. The values of y in Table

5 for Z = 8 corresponding to Eq. 25 are close 10 the asymptotic values listed in Table 4.

Regression analysis of the data obtained from these analyses for the Taft record

result in the following approximate relation for y:

y = 1.07·Z 112/0:113 > 1.0 (26a)

Values obtained from this relati on are included in Table 5. Relatively good agreem ent is

obtained with the y values computed from the parameter study, except for small values of

Z and large o: values . Better correlation may be found with the following more complex

relation:

y = 1.43·Z 0.311/0:°·284 > 1.0 (26b)

Both relations produce similar results, as indic ated in Table 5. Results for Eqs . 26a and

26b are plotted in Fig, 21. The determination coefficient (R2) for the latter regressi on

analysis is 0.92, indicating very good lit to the data. even though the form of the equation

does not represent any specific physical consideration . Th e result of the regression

analyses has the highest error (12%) for low values of Z where the required increase in

strength is the least.

50



::q . 126al
::q . (260)
Eq . 12, )
Eq . (2i!)

- 8 11 1, 2 5 8 11 I ~ 2 5 8 1; ;,

;'.1p~a (a) A ~pha (b) Alpca le)

2.5 0

I2.25

[
2.00

I
: . 75 r

e : .50 l- ,
a ,

1. 25 "m r",
m 1\ '~
a . .eo

IC. 75

~0. 50

0. 25 L
I

c.: 0

2

Z 2

Fig . 21 Regression Analysis.

51

Z 8



On the other hand, Ior Eq. 25 with e= 1.5. Z values would have 10 be limited 10

no more than 4. 2 and (slightly more lhan) 2 for the predícted increase in streng th to be

within 10% of the required value for a values of 8. 4 and 2. respectively. More restrictive

limits would be needed for e= 2.

It should be noted that the inelastic response of many of the systems anaIyzed was

very sensitive to changes in strength, For example, in severaIcases a reduction in strength

by as littIe as 1% resulted in colIapse instead of the stable response at the target ductility.

Thus, it would be desirable to apply a factor of safety to either Eqs. 25. 26a or 26b.

Similar data was obtained using the Oakland Wharf record. However, it should be

noted in Fig. 22 that the values of y for several systems with a = 2 are infinite. That is,

the structures colIapse regardless of the level of strengthening. This situatio n corresponds
to cases where the target ductility demands for a system approach or exceed /lc. Table 3

indicates that severaI of the elasto-perfectly plastic systems (with no P-L'; effects included)

develop ductilites in excess of /lc for a equaI to 2 and periods of 0.5 or 1.0 secs. Simply

strengtheníng such stru ctures cannot, by definition, avoid colIapse. Th is situation was

particularly severe for this soft soil record. since many of the systems with periods of 0.5

and 1.0 secs. had ductility demands much larger than Z. Moreover, Takizawa and
Jennings (1980) showed that the dynamic stability limit may be far smaIler than /lc. Given

the large uncertainty in peak displacement demands for inelastic systems and the substantiaI

increases in these ductility demand resulting from even moderate geometric nonlinearities.

factors of safety (a) of 2 or 4 against static colIapse may not be sufficient 10 reliably

maintain seismic structuraI integrity.

In Fig. 22. it can be seen that for a equal 10 2, it was possible only for the case of

Z = 2 to fulIy achieve the design goal. It was possible 10 achieve the equal ductility

criterion for only 75%. 75%.and 50% of the structures considered with Z equal to 4. 6 and

8. respectively,

The vaIues of y vary as before in being proportional to Z and l/a. However ,

greater systernatíc variation with period ís seen. Relatively smaIl y values are required for

structures with a 2 seco periodo In fact, the required vaIues of y are less than unity for most

systems with a period of 2 secs. and a values taken to be equal 10 4 or 8. This improved

behavior appears 10 be a consequence of the predominant period of the ground motion
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being approximately 1.7 secs. The elongation of period due to geometric nonlinearities and

yielding would shift the structure away from this peak in the elastic spectrum. This

beneficial effect of yielding for structures at or slightJy beyond the predominant period of

the ground motion has been noted by others. Discounting the y values at 2 secoperiodo one

does not see a significant variation in ywith periodo

Average values of y needed for the Oakland Wharf record to match the ductility

demands on systems with and without P-li effects are listed in Table 6. In computing these

averages, cases where y is either infinite or less than unity have been disregarded. It is not

believed that one should take advantage of the cases where geometric nonlinearities appear

to help the structure resist inelastic action. It is interesting to note that the average y vaIues

in Table 6 are often smaIler than those obtained in for the Taft record.

Z 0. =8 0.= 4 0. =2

Comp . Eg. 25 Eg. 27 Comp. Eg. 25 Eg. 27 Comp. Eg. 25 Eg. 27
(Ave.) 8=1 .5 (Ave.) 8= 1.5 (Ave.) 8=1.5

I 1.00 1.17 1.00 1.00 1.33 1.00 1.00 1.67 1.12

2 1.06 1.13 1.01 1.10 1.25 1.14 1.22 1.5 1.2'J

4 1.17 1.10 1.16 1.32 1.21 1.31 1.4'J 1.42 1.49

' 6 1.23 1.10 1.26 1.55 I.I'J 1.43 1.66 1.39 1.62

8 1.2S 1.09 1.34 1.3'J I.I'J 1.51 1.77 1.38 1.71

Table 6 Strength Ratio y for OakIand Wharf Record

It should also be recognized that the ductility dema nds for the Oakland Wharf

record are significantly higher than the value of Z in many cases, and often much higher

than the ductility demands computed for the Taft record. In many cases, the ductility

demands required by the Oakland Wharf record are unacceptably large . If the ductility

demands on the systems with P-li effects included were 10 be limited to a more reasonable
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level, say 1.25 or 1.5 times the value of Z, or to a part icular drift index , the required

values of y would be substantially larger. Additional nonlinear analyses are needed to

identify these cases, however.

A regression analysis of the data in Table 6 results in the following relation for y.

y = 1.27 ·Z0.204/ao.18 > 1.0 (27)

This relation is similar to Eq. 26 and is also plotted in Fig. 21. The resul ts of the two

equations are surprisingly similar given the vast differences in the characteristics of the two

ground motions. This suggests that a more meaning ful relation for y may be obtained by

extending the parameter study to a wider range of ground motions. Time constraints do not

allow this at present. However, for the two records considered herein the foll owing

average relation (see Fig. 21) is obtained:

y = 1.35·Z O.253/ao.233 > 1.0 (28)

It may be that a more detailed study would identify a general relation of the form:

in which a, b. e, d and e are empirical parameters obtained from the regression

analysis of the data;
Td is the duration of ground motion;

Tg is the predominant period of the ground motion at the site.; and

Tn is the natural period of the structure,

(29)

This genera l form would account for the observed sensitivity of response to soil

conditions and to duration of shaking. A slightly better (e.g., logarithmic, Z·(a + O/(Za

- O, etc.) form ulation may result in ímproved results for low values of Z and for site

effects, This appears to be a promising approach to this problem.

In view of the cases where strengthening cannot achieve the equal ductility goal (or

even stability) caution should be used in employing the aboye statistical relations, especially

for low a and period, or high Z. More analyses are needed to establish acce ptable factors
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of safety these and other related equations. The required factor of safety may be a function

of peri od, a and Z.

Comparison with Other Empirical Relations . -- Bernal (1987 ) suggests a

strength amplification relation of the form:

y = (1 +Ap)/(l . p) (30)

in which A is an empirical factor obtained from a parameter study in which a predetermined

ductility demand is achieved through numerical iteration. While Bernal detected a variati on

of y with peri od (slightly larger y values for short period structures) this variation was not

sufficiently significant or regular for inclusion in his empirical relation. For the bilinear

hysteretic systems studied by Bernal,

A = 1. 87P(¡.t~ - 1) (31)

in which ¡.t~ = the actual ductility developed by the system: and

P = 1 for the mean value or 1.44 to represent the mean plus one standard

deviation.

If ít is ass umed that ¡.t ~ Z and Eqs. 14 and 31 are substituted into Eq. 3D, the strength

amplifications required by Eq. 30 are only 19'70 ,4'70 and 2.5 '70 larger than those estimated

using Eq. 28 for Z = 4 and a values of 2, 4 and 8, respectively. This agreement further

supports the idea that a standard amplification equation may be established. However, in

the meth od used by Bernal one must know the actu al ductility demand on the struc ture,

which as shown in Fig. 13 may differ significantly from the target valu e. Thus, the

amplification factor should be more appropriately based on the methodology used in design

(i.e. , the ratio of fully elastic demand to the plastic strength of the structure, 2).

Rosenblueth (1965) also developed an amplification factor on the basis of first

principies. It is given by the relation:

(32)
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For the assumptions introduced aboye this relation results in strength amplifications 23 %

greater, and 4 % and 3 % less than obtained with Eq. 28 for 2 =4 and (X values of 2. 4

and 8. respectively. Equation 32 has been incorporated in the Mexican Seismic Code

(\ 977) for buildings.

Another amplification relation was suggested in the tentative seismic provisions

suggested by NEHRP (1988) for buildings. This is of the form:

y = l/(l -p) (33)

which is similar to Eq. 32 except for absence of the ductility termo Bernal (1987 ) has

shown for single deg ree of freed om systems with bili near hys teretic restoring force

characteristics lhat Eq. 33 is very unconservative eve n for small ductility demands.

Effec t of Earthquake Duration . As indicated previously. a maj or

parameter inl1uencing the inelastic response of systems considering geometric nonlinearities

is the duration of motion. To assess this effect sirnply, two copies of the Taft record were

run back to back, simply doubling the durati on of the ground motion. The structural model

considered is the same elast o-plastic model used in the previous analyses .

The results are summarized in Tables 7 and 8. In the cases considered here, a large

ductility, but a small P-Ó effec t, was considered ; Le.. 2 was taken to be 8 and (X also

equalled 8. The augmented strengths (2 * -- corresponding to R*y) were obtained as

before 10 achieve the same ductility for structures with and without P-Ó effects . For these

cases. the ductility demands for the Taft record range from 8 10 13. depending on peri odo

When the duration of the record is doubled by adding the second Taft record (co lumn 4 in

Table 7) the structure collapses for a period of 0.5 secs, and ductility demands increase by

factors ranging from 250% to 520 % for other periods.

These results, along with those of earlier studies (Zíegler (1980). Mahin (1976).

Jennings (1968)). clearly illustrate the important inl1uence of duration on the inelastic

response of structures with cven small geometric nonlinearities. They also suggest that the

ca ses identified before where Eq. l may be unc onservative may be even more

unco nscrvative if longcr duration motions , associated with largcr magnitude eanhquakes,

are ant icip ated . Cases with low 2 and (X • which could be treated satisfactorily with Eq. l .
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may als o be vulnerable lO the adverse effects of geometric nonlineari ties, if lhe duration of

motion is increased. The influence of duration on inelastic response needs lO be better

quantified.

To assess possible effects of directional biases wilhin the Taft record itself, the sign

of the Taft record added lO the end of the fírst one is reversed . Th e results (col umn 6 in

Table 7 ) indicate decreases in the overall ductility demands. However, the ductility

demands are still unacceptably large, except for the rnost flexib le of the systerns. The

reversed directionality of the seco nd Taft record tries 10 overcome the p.t, effects and drive

the structure back towards the origino The directional bias due lO the p-t, effects is so

great, however, that this is not possible , eve n for cases where the second Taft record is

doubled in amplitude (column 7 in Table 7).

Period z* Earthquake Case

(sec) 2 = 8 Taft Tan + Taft Difference Tatt-Tatt Taft -2(Tafl )
(4) -(3)/(3)

(1) (2 ) (3) (4) (5) (6) (7)

0. 5 4 .73 13.3 00 00 56.6 25.6

1.0 4 .76 12.1 62 .9 5.20 34.5 17.0
2.0 6 .58 8 .7 23 .3 2.68 14.9 7 .9
3.0 5 .34 9.5 24.0 2. 53 II.I 7.2

Table 7 Effect of Earthquake Duration on Displacement Ductility Demands

for Structures with Geometric Nonl inearilies Included (2 = 8 and IX = 8)

Th is situation is much differenl for elasto-plastic systerns whic h do not have P-t,

effects included. Results similar to Table 7 are shown in Table 8 for elasto-perfectly plastic

systerns. 11 can be noted that there is Iittle increase in dis placemenl ductility due lO the

doubli ng of the earthq uakes duration . Th e main effect here is that the resid ual

displacements presenl at the end of the first record are retained as the starting point for the

second record. On the same bas ís, the ductility demands do not change very much al all

when the second earthquake is reversed in sign (directionality effects ca ncel; small

differences are due lo the dynamic conditi ons present al the end of the first record ).
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Period Z· Earthquake Case

Z= 8
(sec) Taft Taft + Taft Difference Taft-Taft

(4)-(3)/(3)
(1) (2) (3) (4) (5) (6)

0.5 4.73 6.5 6.7 1.05 6.5
1.0 4.76 7.8 10.0 1.28 7. 8
2.0 6.58 6.8 6.8 1.00 6.8
3.0 5.34 6.8 10.3 1.51 6 .8

Table 8 Effect of Earthquake Duration on Displacement Ductility Demands
for Structures witb Geometric Nonlinearities Ignored (Z = 8).

It should be recognized that the effects of shorter duration eve nts, from smaller

magnitude earthquakes (like tbe Parkfield record), would not be as severe even though the

peak acceleration may be large (e.g., Takizawa and Jennings (1980). The inf1 uence of

duration needs to be carefully considered in evaluating geometric nonlinearities.

Stiffness Degrading Systerns, -- Stiffness degrading systems , like ducti le

reinforced concrete structures, have been observed to have about the same maximum

displacements and smaller residual offsets tban tbose corresponding elasto-perfectly plastic

systems. A series of simple analyses are presentcd herein 10 assess this situation for the

case where geometric nonlineari ties are present. The few studies performed in the past

suggest that tbe effec t of geometric nonlinearities may not be as severe for these systems as

for elasto-plastic systems. However, many of these models (e.g., Ziegler (1980)) do not

prope rly accou nt for P-~ effects on the re-loading branch of the hysteretic curves . The

NONSPEC program was specially modified for these analyses to correct for the

deficiencies of these earlier studies.

The structural idealization considered herein is the same as that idealized previously,

except the shape of the hysteretic loop is of the forrn shown in Fig. 7. This hysteretic

model is a stiffness degrading model commonly used in the analysis of reinforced concrete

struc tures. However, the loops have been tilted to account for P-~ effects. It has been

mentioned previously tbat P-~ effects may not be so severe for stiffness degrading models,

because the apparent stiffness and strength on branches A-B and C-D in Fig. 7 are less than

for equivalent elas to-plastic models. Consequent ly, it is easie r for the res ponse to

overcome P-~ induced forces and retum towards the origino However, as can be seen in
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Fig. 7, there still may be considerable resistance to this restitution, because of the P-6

effects present at points A and e, especially at large ductility values. This shift had not

been incorporated in the earlier studies.

To illustrate the inf1uence of geometric nonlinearities on seismic response consider

Fig. 23. The structure analyzed is the same as that used in Fig. 14; i.e., a period of 2.0

secs. is considered, Z is set to 4 and 5% viscous damping is used for the Taft earthquake

record. Figure 23a shows the response of a súffness degrading model for which P-6

effects have been ignored. The maximum ductility demand in this case is 3.67, identical to

lhat developed by the elasto-perfectJy plastic system. This illustrates the previous comment

regarding the equality of maximum displacements for equivalent stiffness degrading and

elasto-perfectly plastic systems. Geometric nonlinearities are introduced in the system

corresponding to an a factor of 2. The P-6 induced forces are superimposed on Fig. 23a,

but the forces are not considered in the analysis presented in that figure.

When the P-6 effects are considered, without any increase in strength, the stiffness

degrading structure collapses, as shown in Fig. 23b, as did the elasto-plastíc system (see

Fig. 14b). The increase of strength needed to have the stiffness degrading systcm develop

a ductility of 3.67 corresponds 10 a y of 1.26. This value is 72 % of the value obtained for

the bilinear hysteretic system. The response of the strengthened system is shown in Fig.

23c.

The overall results for the various combinations of structural parameters considered

in this study are summarized in Table 9. It can be noted as before that the ducúlity

demands for stiffness degrading and bilinear systems without geometric nonlinearities

considered are similar (for comparison see Table 2). Systems without geometric

nonlinearities are represented in the table by a = oo .

When geometric nonlinearities are introduced, the situation changes substantíally.

Increases in ductility demands due to P-6 effects are generally far less for the stiffness

degrading systems, especially for systems with low ductility demands (low Z factors) and

high periods. None the less, stiffness degrading systems should have P-6 effects

considered in many cases. For exarnple, 6 %, 63 % and 94 % of the structures considered

in Table 9 would suffer a 20 % or greater increase in ductility demand when geometric

nonlineari ties corresponded to a equal to 8, 4 and 2, respectively. Greatest increases are
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Z Period or C(

Collapse Ductility, ~c 2 4 8 00

~ 4 8 16 eo

0.5 ce 1.94 (13) 1.45 (-16) 1.72

2 Period 1.0 ce 2.20 (- 3) 2.27 ( O) 2.28

2.0 1.77( 11) 1.68 ( 6) 1.64 ( 3) 1.59

3.0 2.61 (72) 1.74 ( 14) 1.67 ( lO) 1.52

~ 8 16 32 ce

0.5 ec 4.87 ( 30) 4.09 ( 9) 3.74

4 Period 1.0 ce ee 6.00 ( 12) 5.35

2.0 ee 3.78 ( 3) 3.72 ( 1) 3.67

3.0 ee 3.80 ( 13) 3.52 ( 4) 3.37

~ 12 24 48 ec

0.5 ce ce 7.74 ( 2) 7.59

6 Period 1.0 00 00 8.90 ( 10) 8. 12

2.0 00 7.48 ( 26) 6.33 ( 6) 5.95

3.0 00 6.95 ( 20) 5.95 ( 2) 5.81

~c 16 32 64 00

0.5 00 17.61 (39) 12.06 (- 5) 12.65

8 Period 1.0 00 00 13.88 ( 28) 10.88

2.0 00 15.18 ( 75) 9.08 ( 5) 8.67

3.0 00 11.58 ( 43) 8.09 ( 2) 7.92

Table 9 Displacement Ductility Demands for Taft Record; Stiffness Degrading Systems ;

Values in Brackets Indicate Percentage Change from Case with C( = ce,
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observed for smaller a and higher Z values . Special attention lOgeometric nonlinearities

would have lObe paid in tbese cases.

From Tabl e 2 it can be seen that 81 %. 88 % and 100 % of the bilinear hysteretic

structures have ductility demand increases greater than 20% when a equals 8. 4 and 2.

respectively. II is thus clear that reinforced concrete struc tures are not as sensitive 10 P-ó

effects as systerns exhibiting bilinear restoring force characteri stics. None Ihe less, P-Ó

effects can be very importanl for eitber type of system when Z ~ 4 or a :o; 4.

The required strength increases (y) needed for equal ductility demands with and

without P-ó effects are plotted in Fig. 24 for the stiffness degrading systerns, The same

basic variation of y with a and Z are noted by comparing results in Figs. 20 and 24.

However, it is clear that the y values are Iypically less for the sliffness degrading sys terns

than for the bilinear ones. In additi on, the value of y for Ihe stiffness degrading structures

decreases erratical ly with increasing period as was seen for the bilinear struc tures, bUI the

trends for the IWOtypes of syste rns differ in detail. These differences may be an attribute

of the Taft earthquake record, and additional ground motions need lObe considered in order

lObetter delineare differences in y associated with periodo In sorne cases, values of y are

less than one, indicating that the response is helped by the addi tio n of geornctric

nonlinearities, As before, Ihis is assoc iated most probabl y with a shift in the period of the

structure away from a local peak in the response spec trum due 10 the P-Ó effects and

yieldin g.

Average values of y obtai ned (for various periods) are lísted in Table 10. as a

funclion of o and Z. Values of y Iess tban unity have again been ignored in computing the

averages. The average values of strengthening needed are smaller than obtaine d for the

clasto-plastic systerns (compare Tables 5 and 10).

The ratios of y values for the stiffness degrading syste rns lO those for comparable

bilinear sys terns are plotted in Fig. 25. The ratios vary in a irregular mann er with Z and

periodo However, the y values for Ihe stiffness degrading systerns are generally between

60 and l OO % of the values for bilinear systerns. Smaller ratios tend lO develop for

systerns witb larger Z. Th is may be because Ihe differences in Ihe shapes of the hysteretic

loops do not beco me pronounced until large ductil ities develop (i ..e.• for large Z val úes).
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a =8 a = 4 a =2

Z

Co mp. Eq. 25 Eq. 34 Comp. Eq.25 Eq. 34 Comp. Eq. 25 Eq. 34

(Ave.) 8 = (Ave.) 8= (Ave.) 8=

1.5 1.5 1.5

1 1.00 1.17 1.00 1.00 1.33 1.01 1.00 1.67 1.18

2 1.05 1.13 1.00 1.08 1.25 1.09 1.20 1.5 1.29

4 1.04 1.10 1.01 1.09 1.21 1.19 1.36 1.42 1.40

6 1.04 1.10 1.06 1.19 1.19 1.25 1.52 1.39 1.47

8 1.07 1.09 1.10 1.19 1.19 1.29 1.79 1.38 1.52

Table lO Va1ue of y for Stiffness Degrading Systems for the Taft Earthquake

For a Z va1ue of 4, the ratios of y va1ues average around 80 % for a values of 2 and 4 and

90 % for a = 8. It may be possible that the relation for bilinear hysteretíc systems may

prove suitable after investigation for stiffness degrading structures since it may provide a

factor of safety roughly of the correct order of magnitude and that increases appropriately

properly with l/a and Z.

Assuming required strength increases in excess of 10 % should be considered in

design, P-il effects need to be considered for stiffness degrading systems for a equal to 8

for structures with periods around 1 sec o and Z = 8. For a equal to 2, virtually all

structures should have P-il effects explicitly considered. For a equal to 4, geometric

nonlinearities should be considered for roughly half the cases considered. However, the

varíation in y with period may be sensitive to the record selected; so additional work is

needed to make conclusions as to which cases could have P-il effects safely ignored.

Tab le 10 also suggests that the previous general conc lusions regarding the general

unreliability of Eq. 1 with 8 = 1.5 or greater stilI hold for stiffness degrading systems.

However, the ability of Eq. 1 to compensate for the P-il induced forces is improved due to

the lowe r sensitivity of stiffness degrading systerns to these effects. Conservative results

are obtained using 8 = 1.5 for a equal to 4 and 8. However, the variation of required

strengthening stilI varíes incorrectly with Z resulting in large over-conservatisms at small Z
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vaIues. For o: equal lo 2 the predicted strengthening obtained using Eq. 1 with S = 1.5

results in unconservative results for 2 ~ 6.

However, in rnost cases it is not necessary 10 consider the full elastic displacemenl

of the stiffness degrading structure in order 10 compute the increased design forces needed

10 cornpensate for P-A effects. As indicated before, this situation corresponds 10 y values

of 1.5, 1.25 and 1.125 for a vaIues of 2, 4 and 8, respectively. For the bilinear hysteretic

systerns subjected lO the Taft earthquake , nearly all of the cases considered needed lo have
displacernents larger than Ae used 10 compute the corrective forces (using Eq. 2). For the

stiffness degrading systerns, this case is only encountered for two cases with large 2 and

small 0:.

A regression analysis for y has for the stiffness degrading systerns results in the

following relation:

y = 1.392 0.12/0:0.233> 1.0 (34)

The coefficient of determination for this relation is only 0.75 indicating poorer correlation

than obtained for the bilinear systems. Additional efforts are required lO refine this relation

using other relational forms and adding additional ground motions. As indicated

previously, the scatter in the results resulting from uncerlainties in ground motion

characteristics and structural parameters needs yet 10 be interpreted in order to establish

appropriate factors of safety for such equations.

Thc vaIues obtaincd from Eq. 34 are also listcd in Table 10. For cases of interest

(say, y ~ 1.10), the relation works reasonably well for o: = 4 and 8, but is unconservative

for large 2 (~6) when o: = 2. Additional ground rnotions need 10 be considered and other

forms of relatíons need ro be ínvestígated lo improve Eq. 34.

Cornrnents. -- Results for ideaIized structures have shown that Eq. I estimares

strength enhancements needed to compensare for P-D. effects that vary improperly with 2 .

The value of S in Eq. I should ideaIly vary with o: and Z. For a constanl value of S, equal

to or larg er than 1.5 (as adopted for the Terminal Separator structures), strength

enhancements suggested for bilinear hysteretic systems were overly conservative for small

2 and substantially unconservative for large values of Z. For stiffness degrading systerns,
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the degree of unconservatism decreases to acceptable levels for all but those systems with

large Z and small u, None the less, the improper form of the equation results in overly

conservative strength requirements when ductility demands are small or moderate.

Several relations were developed on the basis of regression anaIyses of the results

of a limited parameter study. These relations proved much more reliable than eilher Eqs. l

or 2. Additional effort is needed to assess how these relations might change in view of the

uncertainties in ground motion or structural characteristics, and to determine method s for

applying these results to practice.
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DESIGN IMPLICATIONS

The analyses presented in the previous section provide considerable insight into the

effects of geometric nonlineari ties on inelastic response. Based on these analyses, it

appears that Eq. l does not provide a desirable degree of reliability. Equation 2 also has

limit ations in that it is difficult to estimate the maximum inelastic deforrnat ion of the

struc ture. It was shown that the elas tic displacement of the struc ture does not

conservatively estimate the inelastic displacement for bilinear hysteretic systems and may

give unconservative approximations for many important stiffness degrading systems.

Empirical relations like those presented in Eqs. 28 and 34 make it possibl e to

estimate strength increases needed assure that the ductility demand on a systern with P-L';

effects considered is no more severe than if these effects were disregarded. Several issues

need lO be addressed before attempting to apply these results to actual structures. In this

section, sorne of these issues wilI be briefly addressed and a basic design methodology will

be outlined. It is anernpted to forrnulate a meth odology compati ble with curre nt

procedures. Before such a methodology can be implemented with confidence additional

effort will be needed to improve the various relat ions, to refine the various steps, and to

assess its accuracy and practicability.

Basic Issues. -- In order for the ideas introduced in last section lO be applied,

two parameters must be identified for the systern, a and Z. These should be based on

effective properti es for an ideal elasto-plastic envelop curve developed for the structure

which may cxhibit deformation hardening as shown in Fig. 8.

The value of Z is not equal to the design valuc of Z used to reduce the elastic

spectrurn to obtain ultimate design moments in the columns, but rather it must represent the

ratio of the moments in the member if the structure were to remain elastic (Me) to the actual

plastic moment capacity of the column (Mp') as designed. That is,

z= Me/Mp' (35)

Thus, thc column must be fírst designed for the applicable load conditions, and a specific

size and reinforcement arrangement must be selected. Realistic material properties should

be considered in computing the plastic moment capacity of the plastic hinge. This process

is similar to that already used by Caltrans in the seismic design of frames when computing
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plastic shears in columns and internal forces in bent caps. Thus, it should not introduce

major complexities into the design process.

However, in the case of geometric nonlinearities , we are looking not for the

maximum strength that can ever be developed by the mernber, but for the dependable

plastic strength that can be counted on to resist the P-A effects, Thus, rather than

estimating Mp by multiplying the nominal ultimate moment by a factor like 1.3, a smaller

factor like 1.1 would be more appropriate. Figure 26 (Priestley and Park, 1984) shows the

likely scatter in the plastic moment capacities of spirally reinforced columns as a function of

axial load. For the range ofaxialloads commonly used in design practice a factor of 1.3

represents a reasonable upper bound on the probable plastic moment capacities. These

large values may not always develop, and thus cannot be counted on to resist P-A effects.

Consequently, the dependable plastic moment capacity could be estimated with a factor

ranging between l and 1.2 times the nominal ultimate moment capacity.

The value of a is obtained by estimating the P-A forces (i.e., PAe/L) acting on a

column at the full elastic displacement of the structure, Ae. This displacement value is

easily obtained from the standard analyses carried out as par! of the standard design

process. It does not require computation of the shift in period of the structure due to P-A

effects nor docs it consider the increased elastic displacemcnt in the structure due to the P-A

induced forces. Since the structure will be stronger than the design moment (Me/Z) due to

the choice of section and reinforcernent, the actual material properties used, strain

hardening and other factors , the value of a should be based on the dependable plastic

moment capacity of the plastic hinge. Consistent with the definition of a we would obtain

the following approximate relation for a structure idealized as being elasto-perfcctly plastic :

a =Ry/(PAe/L) =Mp'/(PAe) (36)

However, the structure will gradually strengthen from My to Mn to Mp. giving lhe system

a deformation hardening that will counter any P-A effects. This effect can be estimated by

idealizing the actual load - displacement relati on for the column as a bilinear one with

appropriate deformation hardening. It may be possible to conservatively estimate this effect

by assuming a linear relation between the conditions at Mn and Mp'. Thus , one obtains:

(37)
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P/fc'Ag < 0.1 Mmax/Mn = J.J3

P/fc'A g ~ 0.1 Mmax/Mn = J.J3 + 2.35 (P/fc 'Ag• 0.1)2

Equation 4-12

Fig. 26 Ratio of Maximum Flexural Strength to Predicted Nominal Strength (Mn)
as a Function ofAxial Load Intensity (Priestley and Park, 1984)
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Negative values of ex indicare that the structure has a posilive post-yield tangent stiffness

even with P-Ó effects imposed. In such circumstances, geomctric nonlinearities need not

be considered.

The acc uracy of these relations remains lO be evaluated. For exam ple , if small

ductilities are actually developed in a column relative to iLS ductility capacity, Mp' will not

fully develop, reducing Z and generally increasing ex.

With ex and Z identifi ed it is possible 10 use relati ons Jike those developed in the

previous sec tion lOdetermine the increase in column moment capacíty needed to resist P-Ó

effects. The relations may also be used lOidentify cases where P-Ó effects can be ignored.

In all of thís, it is assumed that the structure to be considered can be idealized as a

single degree of freedom system. It is expected that frames with multiple columns of

similar height from relatively straight viadu cts can be analyzed in this mann er. Issues

rela ted lOthe ductility demands arising in rnultiple level viaducts and in systern s subjec t 10

significant in-plane lorsi onal motions are not addressed herein, It will be ass umed that

plastic hinges form in the columns and that the columns are pinned al one end.

For rnultiple column frames, it is possible 10 interpret the basic design method in

terms of overall frame characteristics, rather than treating each column indiv idually. Thus.

the global P-Ó effect will be IPóefL and ex can be based on:

(38)

and

(39)

where the summations are taken over all of the colu mns in the frame for the direct ion of

molion in question.

Design Methodology, -- To see how these concepts would relate to the overal l

desi gn procedures currently used by Caltrans, a brief outline of a methodology

incorporating the checks for P-Ó effects is presented below. Only those steps directly

effected by the P-Ó computations are presented,
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l. Dynamic analysis of the structure should be performed based on cracked section

properti es and an appropriately selected smoothed resp onse spectrum. In the

absence of more definitive data, cracked section moments of inerti a may be

approximated as the gross section properties divided by 2.

2. lnitial ultimate strength requirements are estimated by dividing the computed elastic
member f1exural demands Me by Z. The value of Z is selected according to the

Bridge Design Specification Manual or other project specific design criteria.

It may be desirable to resize members to limit drifts to a specific upper bound . At

the moment this value is not known, but drift indices on the order of 1 % to 2 % at

the full elastic moment (Me) condition are consistent with design practices used for

other important structures .

3. Axialloads in the elements at collapse are estirnated considering equilibrium, the

locations and plastic moment capacities of plastic hinges, and the intensity of

gravity loads likely to be present at the time of an earthquake. This step is the same

as in current practice.

4. Columns should be sized based on the ultimate design moments (Step 2) and the

axialloads determined in Step 3. The ultimate and plastic moment capacities of the

columns should then be realistically estimated. This may be done by computing

moment - curvature relations for the critical plastic hinge sections for appropriately

selected axialloads. Altematively , the dependable plastic moment capacity Mp'

might be es timate d as a factor (Iike 1.1 ) times the nominal ultim ate moment

capacity, Mn. The dependable plastic moment will differ from the maximum plastic

capacity used to design the shear reinforcement and to determine internal forces in

the remainder of the frame.

5. As with current design procedures it may be necessary to revise the design axial

load estimates and the plastic capacities based on the results of Step 4.

6. Estimate Z and a using a lateral load - lateral displacement relation developed for

the structure. Alternatively, it may be possible to use Eqs. 35 and 37; i.e.,

(35)

73



and

o. = - Mn/[Mp' - P~ - Mnl

If the resulting o. is negat íve, poli effects need not be considered.

(37)

7. Use relations Iike Eqs. 28 or 34 (with an appropriately applied factor of safety) to

determine the required strength Mn* = yMn to compensate for poli effects. If y is

less than sorne tolerance level (like l.l) poli effects can be ignored. As noted

previ ously , it appears that Eq. 28 may be conservatively used for stiffness

degrading systerns. Given the potential instability of structures with large y (large

Z, small o. or periods less than the predominant period in the design spectrum), it

may be prudent 10 apply an addit ional large factor of safety in these cases, or

require nonlinear analysis to verify the designo

8. The column is redesigned if required for the new nominal capacity. Thi s may

require modification of the axialloads considered and an iteration of steps 4 through

7.

9. The maximum displacement of the systern may be checked at this point. The

previous parameter study did not focus on thi s issue, but noted that the

displacement of the strengthened structure will be larger than that of the origi nal

structure wilhout the poli effects applied even though the ductiJity demands are the

same. This is because the yield displacements will be bígger by the factor Mn*/Mn

(= y). For structures with a period greater than the predominant peri od of the

ground motion and for Z values less than or equal to about 4, the inelastic

displacements may be conservatively estimated by lieMn*/Mn. In other situations,

melhods suggested by Newmark (Newmark and Rosenblueth, 1971) may be used.

l O. The maximum plastic capacity Mp of the revised plastic hinge is now computed.

Mp is then used to design the transverse reinforcement in the column for shear and

co nfinement and to compute internal ultimate forces for the design of adjace nt

footings and bent caps as done currently.
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SUMMA RY AN D CON CLUDING REMARKS

Based on a review of available literature and of analytical results presented in this

backgro und report, the following observations are made regarding the effects of geomelric

nonlinearities on seismic response , current design procedures and iterns requiring

additional research.

l. When the effectíve tangent stiffness of a system can become negative following

yielding, the maximum inelastic displacements can be substantiaIly larger than

predicted elastically. The severity of the displacement increase is proportional LO

PIL, the "effective" value of 2 and the duration of the earthquake.

2. Inelastic demands are underestirnated for systerns with and with out geometric

nonlinearities when the period of the structure is near or less than the predorninant

period of lhe ground. This may require speciaI considerations in design for short,

relatively stiff structures on firm ground or for most structures located on soft soil

sites.

3. Previous analytical studies of buildings in which column plastic hinging is allowed

indicate that P-D. effects can substantially increase overalllateraI displacements and

ductility demands. The amount of increase is sensitive lOthe duration of motion.

4. The irnposition of a strong column - weak girder design philosophy along with drift

limits has been found LO be a practical and effective means of limiting the adverse

effects of geometric nonlinearities for building structures. A considerable range of

drift limits has , however, been incorporated in vari ous codeso Considering

deforrnations corresponding LO applicati on of the full elastic design spectrum (2 =

I) code limits on drift indices range from l % lO 4 %. NEHRP (BSSC,1988)

provisions for inverted pendulum structures limit drifts lo I % for irnportant

structures and 1.5 % for others, Analytical studies of concrete frame structures

suggesl satisfactory behavior for drift limits ranging from 1.5 % lO 2 %.

Disproportionate increases in drift are are associated even for strong column - wcak

girder dcsigns when clastic drifts exceed 2 %. Significantly, analytical studies havc

focused on situations requiring ductility demands less than 4, short to moderate

ground motion durati ons, and strong column - weak girdcr plastic behavior. As a

result, tne building structures had overstrengths and post-yield deformation

75



hardening ratios substantially larger than expected for bridge structures. While a

definitive drift index remains to be established. values of 1.5 % or less (computed

elastically for Z = 1) appear appropriate.

5. The design equation:

M", = [1 + ~~]p~/e (1)

is based on static considerations. For e= 2. based on conservation of energy, or

the more conservative e= 1.5. this equation is generally unable to limit ductility

demands for bilinear hysteretic systems with geometric nonlinearities to values

similar 10those computed when geometric nonlinearities are disregarded. Equation

1 requires strength increase lhat vary improperly with Z. As a result Eq. I is

conservative for small Z values and unconservative for large Z values. For e =

1.5. Eq. I underestimates required strengths by no more than 10 % only if Z S; 4

for a = 8 and Z S; 2 for a equal 10 2 or 4. For larger Z and lower a values large

increases in ductility demands might be expected. The value of e should change

with Z and a; however, for bilinear hysteretic systerns, the value of ewould have

to be negative (not physically meaningful) in most instances to achieve comparable

ductility demands for systems with and without p-~ effects.

6. Equation 1 is much more reliable for stiffness degrading systems. In this case . the

equation underestimates the required strength for equal ductilities for only cases of

low a and high Z. However, the improper trend of the required strengthening

with Z is noted (Table 10) and substantiallevels of conservatism occur for small Z

values.

7 . The required increase in strenglh needed for a structure to achieve the same ductility

with p-~ effects considered or ignored was determined for a few round motions.

For bilinear systems subject to the Taft earthquake record the increased strength

could be estimated considering the expression:

y = Mn*/Mn = 1.07·Ztl2fa tl3 > 1.0

or more accuratel y by:
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y = 1.43·Z O.3I1ta O.284 > 1.0 (26b)

Considering a record obtained on a soft soil site, a similar relation was obtained

y = 1.27 ·Z0.204taO.18 > 1.0 (27)

These expressions follow the trends exhibited by the structu res and produce errors

generally less lhan 10 % for all structures considered. A composite relation was

a!so established for the two dissimilar motions considered for bilinear hysteretic

behavior as follows:

y = 1.35·Z O.253taO.233 > 1.0 (28)

More detailed studies are needed lOidentify lhe effects of olher ground motíons, the

predominant period of the ground and the duration of ground shaking. A relation

of the following form rnight lhen be developed:

(29)

8 . The param eter study also indicated the preferential behavior exhibit by stiffness

degrading systerns, None the less, stiffness degrading systems should have P-8

effects considered in many cases. For example, 6 % , 63 % and 94 % of the

structures considered in Table 9 would suffer a 20 % or greater increase in ductility

demand when geomet ric nonlinearities corresponded lo a equal lo 8, 4 and 2,

respectively . Typically, y values for stiffness degrading systerns are between 60

and 100 % of the values for bilinear systerns. Smaller ratios tend 10 devel op for

systerns with larger Z. For a Z value of 4, the ratios of y va!ues for stiffness

degrading systerns lOthose for bilinear hysteretic systems average around 80 % for

a values of 2 and 4 and 90 % for a = 8. For the Taft earthquake record, the

following empírica! relation can be used lOdetermine required strength increases:

(34)

As before, additional analyses are required 10 estímate the effects of other ground

motions, site conditions and earthquake durations, and to determine appropriate
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factors of safety, It was noted lhat Eq. 28 for bilinear hysteretic systems appears to

provide a factor of safety that varies appropriately in prop onion 10 the severity of

the P-L'; effect.

9. The duralion of ground shaking was found lo be a very irnportant factor influencing

inelastic response of systems wilh negative post-yield tangent stiffness. Short

duration motions may not have an irnportant effect on the inelastic response of

duclile structures even though peak ground acceleralions may be quite high. Long

duration motions mayo conversely, have a profoundly adverse effeet on

displacemenl and duclility demands. For example, a series of structures with a

large duclility demand . but a small P-L'; effect, were eonsid ered herein ; i.e., Z was

take n lO be 8 and a also equ alled 8. Th e strengths of these systerns were

augm ented 10 achieve for the Taft record the same ductility demands for structures

with and without P-L'; effects, By doubling the duralion of the Taft record all of the

short period structures analyzed collaps ed and ductility demands for other periods

increased by fact ors ranging from 250% to 520 %. The potentially long duration

motion ass ociated with soft soil conditions or large magnitude seismic events

suggests that special precautions may have to be taken in these circumstances lo

limit p.L'; effects,

10. A design meth odology consistent with current Caltrans design procedures was

outlined . The methodology ulilizes the standard elastic analysis of the struc ture 10

determine the inilial design forces and displacement levels. Once a tria! design of lhe

structure is completed, the severity of the P-L'; effe cts al the maximum elastic

displacement (for Z = 1) is characterized by the parameter a:

a = - Mn/[Mp' - P"'e - Mn] (37)

The fraction I/a represents the proportion by which the effective strength of the

structure has been reduced by geometric nonlinearilies. The actual capacity of the

columns lO resi st the increased forces induced by the geometric nonlineariti es is

characterized by the effeclive Z va!ue:

Z =MelMn
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Empirical relations like Eqs. 29 are then used along with the computed values of a

and Z to determine the factor y by which the strength of the column rnust be

augmented in order to lirnit ductility demands in the structure when P-Ó effects are

considered to those that would have developed had geometric nonlineariti es not

existed. That is,

Mn*=yMn (40)

While additional details need to be devised and the methodology needs to be applied

to actual examples, it is expected that it will prove to be more reliable than methods

based on either Eqs. 1 or 2.

11. It was noted that the residual displacement ductilities (Ópeffilanem/Óy) in structures

with even small amounts of post-yield deformation softening are very nearly equal

to the maximum displacement ductility developed by the system, The systerns tend

to displace in only one direction and may fail to return towards the initial

undeformed configuration. Two ramifications of this behavior remain to be

addressed:

a. The continued operability of the structure may be adversely affected by these

permanent offsets, and

b. The capacity of the structure is diminished by the P-Ó forces present in the

offset configuration. As a resultothe ability of the struc ture to withstand the

effects of aftershocks immediately occurring after a major earthquake needs to

be assessed (alternatively, emergency shoring procedures may need to be

devised prior to an earthquake for structures designed using large Z values and

moderate to small a ).

The focus of the material reponed herein has been on strength requirements and not

on displacements. As such additional efforts are needed to allow reliable estirnation

of the increased displacements due to geornetric nonlinearities.

12. The above parameter study was aimed at strengthening a structure sufficiently to
obtain the same maximum inclastic displaccmcnts in syste ms with and with ou t p . '"

effects. While the procedures outline accomplish this, the displacements developed
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by lhe systems may be in many circumstances vastly larger for the system subject to

p-~ effects. This is because strengthening increases the yield displacement. In

sorne cases lhese displacements may be excessive and efforts to limit lhe máximum

displacement to a specified vaIue need to be developed as weIl.

13. A related issue is that the required ductility demand may exceed the design Z value

by a considerable margin for large Z, and for structures with periods shorter than

the predominant period of the ground motion. In lhese cases, it may also be

worthwhile to investigate procedures which limit ductilities to a factor (like 1.25)

times Z for systems with and wilhout p-~ effects,

14. This repon provides background for those interested in the effects of geometric

nonlinearities on single level bridge structures, The studies indicate deficiencies in

several of the methods that have been proposed to date , and suggest promising

directions for future design o However, the studies presented herein are neither

conclusive nor complete. In particular, the effects of uncertainty in ground motion

intensity, duration and frequency content, in site conditions and in the structural

restoring force characteristics need to be more fulIy addressed. These data can be

analyzed and interprered to better define relations for the required strengthening y,
for the required factors of safety and for criteria for establishing situations where P­

~ effects can be safely neglected. SimilarIy, issues raised in items 10 through 13

aboye need to be investigated. More detaiJed response and cost analyses should be

carried out on actual bridge projects to assess the relative consequences of

increasing stiffness and/or strenglh to control P-~ effects.

Clearly more realistic nonlinear anaIyses also need to be carried out utilizing refined

member idealizations. Because of the gradual deformation hardening exhibited by

members, the effects of geometric nonlinearities may not be as severe as expected

on the basis of the simplified single degree of freedom systems; alternatively,

infiuences of joint and foundation deformations may increase P-~ effects. At the

same time issues related to multiple level viaducts should be addressed and

simplified design and analysis melhods need to be formulated and evaIuated.

80



REFERENCES

And rew s, A. ( 1977), "Slenderness Effec ts in Earthquake Resisting Frames," Bulletin of
the New Zealand Na tiona l Society of Earthquake Engineering, Vol. l O, No. 3,
September.

Andrew s, A. (1978), "Discussion of A Consideration of P-d Effects in Ductile Reinforced
C on crete Frames, " Bulletin of the New Zealand National Society of
Earthquake Engineering, Vol. 11, No. 3, Sep tember.

Berna! , D. (1987), "Amplification Factors for Inelastic Dynamic P-d Effects in Earthquake
Analysis ," Journal of Earthquake Engineering and Structural Dynamics, Vol.
15, p 635-651.

Bertero , V. (1976) , "Establishment of Design Earthquakes," Proceedings, Internati onal
Symposium on Earthquake Structura! Engineering, SI. Louis.

Building Seism ic Safety Council (1988), NEH RP Recommended Provisi ons for
the Devel opment of Seismic Regulations for New Buildings , Feder al
Emergency Management Agency, Washington, DC.

Caltran s (1990), Bridge Design Specifications Manual , Cali forn ia Depart mcnt of
Transportation , Division of Structures, Sacrame nto, CA, June.

Husid, R. (1967), "Gravity Effects on the Earthquake Response of Yielding Structures,"
Research Report , Earthquake Engineering Rcsearch Laboratory, California Institu te of
Tec hnology, Pasadena, CA.

Husid, R. (1969), "The Effect of Gravity on the Collapse of Yield ing Structures with
Earthqu ake Excitati on s,' Proceedings , 4th World Conference on Earthquake
Engineering, Santiago, Chile.

International Congress of Bui ldi ng Offic ials (199 1), Unifor m Building Cod e, Whittier,
CA, May.

Jenn ings, P. and Husid, R. (1968), "Co llapse of Yielding Structures During Earthquakes,"
J ournal of the Engineering Mechanics Division, ASC E, Vol. 94, No. EM5 ,
October.

Jury, R. (1978 ), "Seismic Load Dcmands on Columns of Rein forced Concre te Multistory
Frames ," Re search Report 78.12, Dcp artmcn t of civil Enginecr ing, Universi ty of
Can terbury, Chris tchurc h, New Zealand, February.

Kelly, T . (1977), "Sorne Comments on Reinforced Concrete Structures Forming column
Hi nge Mech anism s ," Bull etin of the New Zealand Natio na l Soci ety o f
Earthquake Engineering, Vol. i o, No. 4, December.

Lin , J and Mahin , S. (1983), "Co nst ruc tion of Inelastic Response Spectra for Single
Degrcc of Freedom Systerns ," Report No. UC B/ E E RC· S3/17, Earthquake
Engin eering Research Center, Univers ity of California, Berkeley, June.

81




