

SEISMIC RESPONSE AND ANALYTICAL
MODELING
OF A
THIRTEEN STORY GOVERNMENT OFFICE
BUILDING

Ruben L. Boroschek

Stephen A. Mahin

Report to the California Department of Conservation

Department of Civil Engineering
Structural Engineering, Mechanics and Materials
University of California, Berkeley

1990

Abstract

The dynamic response of a thirteen story government administration building, located in San Jose, California, is examined and analyzed in this report. The 1984 Morgan Hill and 1986 Mt. Lewis earthquakes are considered. The basic behavioral characteristics together with various engineering design parameters are identified from the response records. The observed behavior is unusual and characterized by a long duration narrow-band motion with strong amplitude modulation, by large amplitude lateral and torsional motions, and by large amplification of the input ground motions. The long duration of the response and the high amplitude of the motion are found to be related to a combination of factors including the long predominant periods of the structure, lateral-torsional coupling, three-dimensional building modes constructively reinforcing one another during portions of the motion, low amounts of viscous damping and the possible resonance of the building with the site.

Several analytical computer models are developed to reproduce and study the causes of the observed response and to evaluate the accuracy of current analysis procedures. The basic parameters affecting the response are investigated. Results obtained from the models show that the elastic dynamic characteristics and response of the building can be accurately predicted by standard modeling techniques. The best correlations are found when models include, in addition to the basic frame geometry, element properties and appropriate damping (for the level of response), beam-column connection flexibility, a realistic floor mass distribution and the partial composite action between beam and floor slab. Studies with the numerical models suggest that the unusual long duration and high amplitude response observed from the earthquake records can be substantially reduced by the inclusion of a moderate amount of viscous damping (e.g., 5% of critical).

Other features of this investigation include the study of the effectiveness of typical design codes in predicting the building demands and responses, and the development of formulae to estimate the ratio of the uncoupled translational and rotational periods of a typical space frame.

Acknowledgments

The authors are grateful for the assistance and recommendations of the Strong Motion Instrumentation Program (SMIP) Building Sub-committee and to the SMIP staff. The assistance of Peter Klaus of Santa Clara County is greatly appreciated. The financial support of the California Department of Conservation is acknowledged (Grant 1088089 / 8-9131). The findings of this study, however, are those of the authors alone.

Contents

ABSTRACT	ii
ACKNOWLEDGMENTS	iii
1 INTRODUCTION	3
1.1 General	3
1.2 Previous Work	3
1.3 Objectives	4
1.4 Scope	5
2 BUILDING DESCRIPTION	7
2.1 Building Location and Structural Characteristics	7
2.2 Soil Characteristics	8
2.3 Sensor Layout	9
3 BUILDING RESPONSE TO THE MORGAN HILL AND MT. LEWIS EARTHQUAKES	10
3.1 General	10
3.2 Earthquake Records	10
3.3 Record Processing	11
3.4 Building Response	11
3.4.1 General	11
3.4.2 Acceleration Response	11
3.4.3 Drifts	12
3.4.4 In-plane Diaphragm Flexibility	13
3.4.5 Base Shear and Force-Displacement Response	13
4 BUILDING DYNAMIC CHARACTERISTICS	15
4.1 General	15
4.2 Natural Periods and Mode Shapes	15
4.3 Damping	16
4.4 Lateral-Torsional Coupling	16
5 ANALYTICAL MODELS	19
5.1 General	19
5.2 Model Description	20

5.2.1	Model 1 : Bare Frame - Rigid Joints	20
5.2.2	Model 2 : Bare Frame - Flexible Joints	21
5.2.3	Model 3 : Adjusted Model - "Normal" Damping	21
5.2.4	Model 4 : Adjusted Model - "Low" Damping	23
5.2.5	Model 5 : Reduced Beam Stiffness	23
5.2.6	Model 6 : $P - \Delta$ Effect	23
5.2.7	Model 7 : Moved Center of Mass	23
5.2.8	Model 8 : Reduced Mass	23
5.2.9	Model 9 : Code Analysis	23
5.3	Loading Cases	24
6	ANALYSIS OF THE RESULTS	25
6.1	General	25
6.2	Model Validation	26
6.2.1	Model 1 : Bare Frame - Rigid Joint	26
6.2.2	Model 2 : Bare Frame - Flexible Joint	27
6.2.3	Model 3 : Adjusted Model - "Normal Damping"	27
6.2.4	Model 4 : Adjusted Model - "Low Damping"	28
6.3	Sensitivity Studies	29
6.3.1	Floor Beam Moments of Inertia	29
6.3.2	$P - \Delta$ Effects	30
6.3.3	Position of the Center of Mass	30
6.3.4	Inertial Mass	30
6.4	Model Uniqueness	31
6.5	Response to Other Ground Motions	31
6.5.1	Response to El Centro NS 1940 Record	31
6.5.2	Response to SCT Transverse 1985 Record	32
6.5.3	Comments	32
6.6	Response to Static Lateral Forces	33
7	SUMMARY AND CONCLUSIONS	35
7.1	Summary	35
7.2	Conclusions	35
8	REFERENCES	39
A	LATERAL TO TORSION UNCOUPLED PERIOD RATIO FOR A ONE STORY SHEAR STRUCTURE	43